
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2019

Towards energy-efficient hardware acceleration of memory-Towards energy-efficient hardware acceleration of memory-

intensive event-driven kernels on a synchronous neuromorphic intensive event-driven kernels on a synchronous neuromorphic

substrate substrate

Saunak Saha
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, and the

Electrical and Electronics Commons

Recommended Citation Recommended Citation
Saha, Saunak, "Towards energy-efficient hardware acceleration of memory-intensive event-driven kernels
on a synchronous neuromorphic substrate" (2019). Graduate Theses and Dissertations. 17556.
https://lib.dr.iastate.edu/etd/17556

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=lib.dr.iastate.edu%2Fetd%2F17556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F17556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F17556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17556?utm_source=lib.dr.iastate.edu%2Fetd%2F17556&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Towards energy-efficient hardware acceleration of memory-intensive event-driven

kernels on a synchronous neuromorphic substrate

by

Saunak Saha

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Electrical Engineering (Very Large Scale Integration)

Program of Study Committee:
Joseph A. Zambreno, Co-major Professor
Henry J. Duwe III, Co-major Professor

Nathan M. Neihart
Phillip H. Jones

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this thesis. The Graduate College will

ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2019

Copyright © Saunak Saha, 2019. All rights reserved.

www.manaraa.com

ii

DEDICATION

To the relentless advancement of science

and the teachers who make it possible.

www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . ix

ABSTRACT . x

CHAPTER 1. INTRODUCTION . 1
1.1 Artificial Neural Networks . 1
1.2 Hardware Acceleration . 2
1.3 Spiking Neural Networks . 4
1.4 Neuromorphic Computing . 5
1.5 Contributions . 7

CHAPTER 2. BACKGROUND . 9
2.1 Biophysical background . 9

2.1.1 Membrane capacitance . 9
2.1.2 Action potential . 12
2.1.3 Ion channels . 13
2.1.4 Synapses . 13

2.2 Mathematical models . 16
2.2.1 The Hodgkin-Huxley model . 16
2.2.2 Phenomenological models . 17

2.3 Silicon neurons and synapses . 21
2.3.1 Neurons . 21
2.3.2 Synapses . 25

CHAPTER 3. BENCHMARKS . 27
3.1 Spiking Neural Networks . 27

3.1.1 Spike Inputs . 28
3.1.2 Inference . 29
3.1.3 Output handling . 29

3.2 Benchmark I . 31
3.2.1 Architecture . 31
3.2.2 Simulation . 32

www.manaraa.com

iv

3.3 Benchmark II . 34
3.3.1 Architecture . 34
3.3.2 Simulation . 35

3.4 Benchmark III . 36
3.4.1 Architecture . 36
3.4.2 Simulation . 38

3.5 Summary . 38

CHAPTER 4. THE CyNAPSE ARCHITECTURE . 40
4.1 System Overview . 40

4.1.1 Overall hardware architecture . 40
4.1.2 Neuron design . 42

4.2 Scheduling and control flow . 44
4.2.1 Core control . 44
4.2.2 Memory control . 46

4.3 Programming and Reconfigurability . 47
4.4 Implementation details . 49

CHAPTER 5. ADAPTIVE MEMORY MANAGEMENT . 51
5.1 Power consumption profile . 51
5.2 Energy-efficient memory management techniques . 54

5.2.1 Cache management policies . 54
5.2.2 Proposed management strategy . 55
5.2.3 Network-adaptive enhancements . 58

5.3 Experimental Infrastructure . 62
5.4 Results . 64

5.4.1 Read-time replacement . 65
5.4.2 LRU vs Random vs Proposed policy . 66

5.5 Summary . 69

CHAPTER 6. FUTURE-WORK AND CONCLUSIONS . 71
6.1 Extensions . 71
6.2 Architectural enhancements . 71
6.3 Learning . 73

6.3.1 Evolving neural networks . 73
6.3.2 Emerging Devices . 74

6.4 Conclusion . 75

BIBLIOGRAPHY . 76

www.manaraa.com

v

LIST OF TABLES

Page
Table 2.1 Ionic concentrations and reversal potentials observed in the giant axon of

Loligo (data from [1]) . 12
Table 3.1 Spiking neural network benchmarks used for this study 38
Table 4.1 Characteristics of synthesized CyNAPSE core used for experiments 49
Table 5.1 Relative energy savings achieved using different policies 70

www.manaraa.com

vi

LIST OF FIGURES

Page
Figure 1.1 (a) Top-1 and (b) Top-5 accuracy in the ImageNet dataset for recent deep

ANNs vs. computational complexity (giga-floating point operations per sec-
ond (GFLOPs) required for a single example inference. The size of each ball
is proportional to the complexity of the ANN it represents (figure from [2]) . 2

Figure 1.2 (a) Power Density of the brain is orders of magnitude lower than the expo-
nentially rising density of general-purpose processing systems. (b) A concep-
tual understanding of how the von-neumann bottleneck can be distributed
among individual processing elements in neural networks (figures from [3]) . 3

Figure 1.3 Graphical representation of (a) different neural network models on special
purpose hardware that was termed ’neuromorphic’ sized according to the
number of relevant articles found in the literature while and (b) the relative
proportions of analog, digital and mixed-signal design philosophies among
these implementations (figures from [4]) . 6

Figure 2.1 Physiology of a typical single neuron. Synaptic inputs via dendritic tree or
direct axons are integrated on the capaciance of the soma. When it exceeds
threshold, an action potential is generated at the axon hillock and propa-
gated through the cable. Capacitance of the axon is reduced by the myelin
sheaths while nodes of ranvier regenerate the attenuated pulse amplitude at
intervals . 10

Figure 2.2 Impressions by Santiago Ramón y Cajal of (a) Purkinje cells in the cat
cerebellar cortex and (b) Pyramidal neurons in the inferotemporal cortex
of the human brain. Taken from [5] where Cajal’s drawings have been
redeciphered as works of art . 11

Figure 2.3 Basic operations of a synaptic microcircuit. Upon arrival of an action po-
tential, Ca2+ channels open up, vesicles with neurotransmitters are released
binding to specific receptors thus opening specific ion channels of the post-
synaptic neuron . 14

Figure 2.4 Schematic of the Hodgkin-Huxley neuron model. The lipid membrane is
represented by the capacitance Cm; voltage-gated ion channels and leak
channel are represented by gn (nonlinear) and gl (linear) respectively; the
corresponding ionic gradients are modeled by En and El; Ip represents the
ionic pumps that maintain background ionic concentration 15

Figure 2.5 Simulation characteristics of the LIF neuron showing membrane potential
traces in (a) regular spiking, (b) tonic bursting and (c) fast spiking behaviors 20

Figure 2.6 Schematic of spike generation circuit that models leak and ion-channel dy-
namics in a plausible and compact way. (Inspired from [6] and [7]) 22

Figure 2.7 Schematic of a Differential-pair Integrator (DPI) Neuron with spike-frequency
adaptation. (Inspired from [8]) . 23

www.manaraa.com

vii

Figure 2.8 Implementation of the DPI Neuron circuit in Cadence analog design envi-
ronment using a TSMC .18um process and simulated using Spectre. The
injection and ion-channel compartments are marked in the schematic 25

Figure 2.9 (a) The shape of action potential produced by the DPI Neuron circuit. It
shows how refractory periods can be modulated by controlling the bias Vref .
(b) Spike frequency adaptation in the DPI neuron circuit. The plot shows
the calcium voltage and membrane voltage spikes produced with decreased
frequency within its timescale . 26

Figure 3.1 Different kinds of input data, preprocessing and temporal coding methods
amenable for processing by SNN benchmarks (figure from [9]) 28

Figure 3.2 Overview of the SCWN Benchmark architecture 30
Figure 3.3 Receptive fields of the pyramidal neurons in the SCWN showing the input

sensitivity of these neurons. Due to the Hebbian nature of learning, receptive
fields can be identified as readable patterns 32

Figure 3.4 Layer-wise spiking activity in the SCWN network 33
Figure 3.5 Overview of the SDBN Benchmark architecture 34
Figure 3.6 Layer-wise spiking activity in the SDBN network 35
Figure 3.7 Overview of the SCNN Benchmark architecture 36
Figure 3.8 Layer-wise spiking activity in the SCNN network 37
Figure 4.1 The CyNAPSE microarchitecture. It has a neuron-unit with on-chip circuits

emulating LIF neurons, dendritic-tree SRAMs, an input spike router, an
internal spike router , FIFO queues holding AER events and a system controller 41

Figure 4.2 The full-custom digital generalized integrate and fire neuron. The different
channels are regions are marked. All parameters shown in gray circular units
are reconfigurable in nature and are loaded from a global parameter file . . 44

Figure 4.3 Control flow of SNN emulation in the CyNAPSE Core 45
Figure 4.4 The control flow of a single synaptic weight lookup by the input spike router 46
Figure 4.5 A pin diagram of the CyNAPSE Core (N = 16384, X = 64) showing an

overview of the programming signals to reconfigure the network topology,
neural dynamics, initial data and simulation data 48

Figure 5.1 (a) Roofline model showing constrained performance of CyNAPSE’s rout-
ing cycle under various conditions. As we move towards lower steady-state
bandwidths, higher weight bit-widths(W) and higher physical neurons on-
chip(X), performance is much more likely to be memory-bound. (b) confirms
this hypothesis. It shows how maximum weight bit-widths for compute-
bound performance vary against the physical number of neurons for two
peak bandwidths (PBW): the pin bandwidth and a lower steady-state band-
width. The area above either curve is memory-bound while the area below
is compute-bound. It is easy to see that for most practical configurations,
CyNAPSE will have heavily memory-bound performance 52

Figure 5.2 Net system power consumption of CyNAPSE for each benchmark showing
various consumption sources . 53

Figure 5.3 Baseline memory control strategy in read-time and route-time access of cache 59

www.manaraa.com

viii

Figure 5.4 Dynamic spike statistics generated by CyNAPSE software simulator to adap-
tively handle memory requests.(a), (b) and (c) show layer-wise activity frac-
tions for the SCWN, SDBN and SCNN benchmarks respectively with time
and how they compare to the activity bypass threshold (ABT) 60

Figure 5.5 Layer-wise mean reuse distances shown for all layers in all benchmarks . . . 62
Figure 5.6 Experimental infrastructure and flow of data between tools 64
Figure 5.7 Experimental results of exploring different read-time replacement policies

for each benchmark . 65
Figure 5.8 Comparative analysis of replacement policies towards savings in net system

power consumption for the SCWN benchmark 66
Figure 5.9 Difference in distribution of synaptic weights in SCWN and SDBN showing

large synaptic weights reaching up to the subthreshold ranges for the latter,
and sufficiently small weights for the former. 67

Figure 5.10 Comparative analysis of replacement policies towards savings in net system
power consumption for the SDBN benchmark 68

Figure 5.11 Comparative analysis of replacement policies towards savings in net system
power consumption for the SCNN benchmark 69

Figure 5.12 A graphical summary of the evaluation . 70
Figure 6.1 Conceptual diagram showing a possible avenue of future work. The multi-

core system could consist of individual processing clusters (C A, C B etc.)
and communication infrastructure connecting these clusters. Each cluster
could contain multiple CyNAPSE cores (C 1, C 2 etc.) with their private
L1 caches and a local synaptic storage adding another large reservoir to the
multilevel memory hierarchy. 72

Figure 6.2 Schematic of a synaptic crossbar consisting of CMOS neurons integrated
with memristive devices sandwiched within CMOS interconnects (figure
from [10]) . 74

www.manaraa.com

ix

ACKNOWLEDGMENTS

I am deeply indebted to all my colleagues, faculty members and staff in the department for their

assistance in my work. I would like to express my heartfelt regard to Dr. Joseph Zambreno for the

immense support that he has extended towards me, for continually providing accomplished academic

guidance and for steering me in the direction of quality research. I convey my sincerest gratitude

to Dr. Henry Duwe whose constant support and technical critique was indispensable in my work.

The long fruitful discussions with Dr. Duwe have been invaluable, I feel, in my development as a

student of engineering. Particular appreciation is expressed to Dr. Nathan Neihart for providing

insight and advice in an area of ineptitude and to Dr. Phillip Jones for his regular reviews and

questions about my work. Lastly, I also thank the committee for their meticulous review of this

thesis, and express my gratefulness to my family without whose patient forbearance this work could

not have been completed.

www.manaraa.com

x

ABSTRACT

Spiking neural networks are increasingly becoming popular as low-power alternatives to deep

learning architectures. To make edge processing possible in resource-constrained embedded de-

vices, there is a requirement for reconfigurable neuromorphic accelerators that can cater to various

topologies and neural dynamics typical to these networks. Subsequently, they also must consolidate

energy consumption in emulating these dynamics. Since spike processing is essentially memory-

intensive in nature, a significant proportion of the system’s power consumption can be reduced by

eliminating redundant memory traffic to off-chip storage that holds the large synaptic data for the

network. In this work, I will present CyNAPSE, a digital neuromorphic acceleration fabric that

can emulate different types of spiking neurons and network topologies for efficient inference. The

accelerator is functionally verified on a set of benchmarks that vary significantly in topology and

activity while solving the same underlying task. By studying the memory access patterns, locality

of data and spiking activity, we establish the core factors that limit conventional cache replace-

ment policies from performing well. Accordingly, a domain-specific memory management scheme

is proposed which exploits the particular use-case to attain visibility of future data-accesses in the

event-driven simulation framework. To make it even more robust to variations in network topology

and activity of the benchmark, we further propose static and dynamic network-specific enhance-

ments to adaptively equip the scheme with more insight. The strategy is explored and evaluated

with the set of benchmarks using a software simulation of the accelerator and an in-house cache

simulator. In comparison to conventional policies, we observe up to 23% more reduction in net

power consumption.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Artificial Neural Networks

Cortical information processing in mammals form the rudimentary principles of deep learning,

albeit, in a highly abstracted manner. State-of-the-art Artifical Neural Networks (hereafter referred

to as ANNs) are mathematical abstractions of how organic matter processes sensory information in

the brain. Such a mathematical model is usually tuned specifically to objective tasks like pattern

recognition or data generation. Therefore, ANNs perform extremely well in their own specific

domains. However, in doing so, they realize a large amount of resources in terms of hardware

real-estate and energy consumption. Recently, there has been a steep growth in the size of neural

networks [11, 2, 12] owing to their usage in extremely complicated, real-time and data-intensive

applications of perception and generation [13, 14, 15, 16, 17, 18]. Fig. 1.1 shows recently developed

ANNs and their computational intensity on the ImageNet dataset [19]. Such a growth has two major

implications. Firstly, ANN applications can be made commercially feasible only by deploying in

the cloud because they require significant processing power and performance. Therefore, resource-

constrained embedded and IoT devices cannot afford to process these large algorithms at the

edge. These correlations are in direct conflict with a high demand of intelligent algorithms in

live embedded autonomous agents and mobile devices. Secondly, this unprecedented growth of

complexity in ANNs coupled with a relatively sluggish growth of silicon process technology in the

post Moore’s law era have together rendered ANN processing to be quite painstaking in general

purpose hardware. The computational primitive in deep ANNs is typically either General Matrix-

Vector multiply (GEMV) or General Matrix-Matrix multiply (GEMM) which are both massively

data-parallel but highly memory-intensive operations. Although Graphics Processing Units (GPUs)

can exploit a very high degree of data level parallelism [20], the sequential nature of traditional

von Neumann architectures consistently fall short in realizable memory bandwidth. In sum, there

www.manaraa.com

2

(a) (b)

Figure 1.1: (a) Top-1 and (b) Top-5 accuracy in the ImageNet dataset for recent deep ANNs

vs. computational complexity (giga-floating point operations per second (GFLOPs) required for

a single example inference. The size of each ball is proportional to the complexity of the ANN it

represents (figure from [2])

is a need for improved latency and energy-efficiency in ANN processing as well as compact special

purpose hardware that can achieve the required memory bandwidth in edge-processing applications.

1.2 Hardware Acceleration

To overcome the inefficiency of sequential computers in processing ANN kernels, interest has

gradually shifted towards hardware accelerators. These are special purpose neural network proces-

sors that employ dedicated hardware units to compute ANN primitives. For instance, [21] uses a

dedicated global Multiply and Accumulate (MAC) unit and a separate activation bank to compute

ANN layer activation vectors and the process repeats for all layers in a single forward pass for ANN

inference. [22] uses a network of processing elements each having a local memory space, a MAC

unit and associated control circuitry to collocate processing and memory in an efficient dataflow for

www.manaraa.com

3

(a) (b)

Figure 1.2: (a) Power Density of the brain is orders of magnitude lower than the exponentially rising

density of general-purpose processing systems. (b) A conceptual understanding of how the von-

neumann bottleneck can be distributed among individual processing elements in neural networks

(figures from [3])

inference in deep networks. Similarly, all accelerators use a certain amount of specificity in their

hardware that makes them highly selective to, and hence highly efficient in, ANN processing. Accel-

erators have been designed to tackle the inference in offline-trained ANNs [21, 22, 23, 24, 25, 26, 27]

as well as to reduce dependency on GPUs by supporting on-chip online training [28, 29, 30, 31, 32].

There has been a considerable effort to make accelerator hardware extremely compact and low-

power so as to make edge processing possible for embedded and mobile devices [33, 34]. Although

accelerators have succesfully displaced general purpose hardware to some extent, majority of ANN

processing still eludes the edge. In spite of being inspired by the computation of the brain, ANNs

always end up consuming orders of magnitude more energy. As a reference, Fig. 1.2a compares

the power-density of the brain with commercial general-purpose hardware. Although accelerators

www.manaraa.com

4

strive to eliminate the bottleneck by homogenously distributing processing and memory as shown

in Fig. 1.2b, a comparable efficiency has not been achieved. Therefore, there has been a sincere

drive towards how to make the basic fundamentals of ANNs more akin to biophysical computation.

1.3 Spiking Neural Networks

Evidence in rudimentary neuroscience progressively hinges towards lower abstraction levels in

computational neural network models [35]. Building upon experimental studies on real cortical

cultures, biologically plausible models collectively known as Spiking Neural Networks (hereafter

referred to as SNNs) have emerged. Fundamentally, the inefficiency of the ANN algorithms vis-a-

vis the efficiency of an equivalent SNN can be summarized in the following arguments:

• ANNs use simple processing elements a.k.a. perceptrons [36] that perfectly integrate its inputs

and apply an analog nonlinear activation if the input exceeds a bias. Biological processing

elements a.k.a. spiking neurons [37] are imperfect and noisy integrators of input synaptic

currents and activate to an all-or-nothing voltage spike upon exceeding a threshold.

• Consequently, ANN perceptrons continuously communicate their activations leading to ex-

pensive MAC operations at every discrete timestep while spiking neurons communicate their

spikes only when their membrane voltage exceeds the spiking threshold.

• ANNs are generally trained using error backpropagation [38] which is a supervised learning

algorithm and requires large volumes of labeled data to generate error functions. The basic

underlying primitive is gradient descent which is especially difficult to model in hardware.

SNNs are trained in an unsupervised manner [39], require no gradient computation and

is consistent with neuroscientific evidence against a backward pass of error signals in real

neurons [40].

• While ANNs require special topologies to learn time-varying features, SNNs have an inherent

temporal aspect to their processing since inputs are exposed for a finite time window and

generate input spike trains. However, SNNs communicate with the environment only using

www.manaraa.com

5

these spike trains that typically require some wrapper hardware [41, 42] or software around

the underlying neural network accelerator.

As a direct consequence, biologically plausible SNNs are much closer in philosophy to the compu-

tation in biological brains. They give great insight into greater neuroscientific understanding and

assist greatly in medical investigation [35]. In addition, the very nature of local computation and

sparse communication lead to ultra-low energy consumption, superior error and noise tolerance

when deployed on dedicated hardware. As a limitation, they are comparatively much poorer in

performance in terms of accuracy in pattern recognition tasks when compared to ANNs. To harvest

the best of both worlds, many studies have attempted to hybridize the ANN and SNN approach by

trading off some biological plausibility for gains in accuracy. This has been achieved by converting

a fully trained ANN into an equivalent SNN for inference [43, 44, 45] or by augmenting the spike

signal to make it differentiable [46] for gradient computation. As a result, close to ANN accuracy

levels have been demonstrated with very low energy footprint. In this context, it is important to

recognize both biologically plausible dynamics and computationally efficient dynamics because any

answers to the nature of computation in the brain will come through concerted investigation of

how biological systems work and also what leads to large scale learning capability. To this end,

large-scale models have been produced [47] with a sound mathematical basis underlying them [48]

and experimentally demonstrating their ability to perform complex visuomotor tasks. But perhaps,

the most important factor fueling this research as well as facilitating their deployment in resource-

constrained embedded applications is the emergence of dedicated brain-inspired hardware that is

able to efficiently process SNNs.

1.4 Neuromorphic Computing

The term ‘Neuromorphic Computing’ was first introduced by Carver Mead in 1990 [49]. Over

the last 3 decades, the agenda has been to conceptualize and design substrates that are able to

emulate the dynamics of biological networks so as to perform energy efficient, fault-tolerant and

real-time processing of neural information reminiscent of the mammalian cortex [50]. This includes

www.manaraa.com

6

(a) (b)

Figure 1.3: Graphical representation of (a) different neural network models on special purpose

hardware that was termed ’neuromorphic’ sized according to the number of relevant articles found

in the literature while and (b) the relative proportions of analog, digital and mixed-signal design

philosophies among these implementations (figures from [4])

systems that generate neural representations of real-world phenomenon like [41, 42, 51, 52, 53] as

well as systems that process these representations into meaningful pattern recognition semantics

or subsequent motor output [4]. There are roughly two major areas, in terms of their motivations,

imminent applications and design philosophy, that have fostered within the neuromorphic research

community. [54] argues that in the face of thwarted transistor scalability, the only way we can

support a single electron-lane channel is by emulating analog behavior typical of ion channels in

our brain so as to effectively tolerate noise and thereby squelching minimum energy to eliminate it.

Coupled with ultra-low power subthreshold conduction in MOS Devices [55, 56], systems like [57,

58, 59, 60, 61] follow an Analog computation - Digital Communication model to achieve very high

realism. The other large chunk of neuromorphic systems like [62, 63, 64, 65, 66, 67] follow a fully

digital approach.

www.manaraa.com

7

It has been noted that digital systems fail to realize the full possibilities of energy efficiency

that comes from the naturally analog local computation in biological neural networks. However,

this work focuses on a fully digital implementation of a Neural Processing Engine that can support

reconfigurable dynamics and topologies of SNNs. The digital end of the spectrum provides us with

some advantages when it comes to targetting large scale production in embedded and IoT devices:

First, analog circuits are intrinsically plagued by Process, Voltage and Temperature (PVT) vari-

ations and these hinder the capability to extensively scale the devices to state-of-the-art processes

and maintain stable working conditions especially when neural applications can be dauntingly large

in terms of processing and communication infrastructure required. Second, as mentioned by [62],

having a fully digital implementation guarantees a one-one equivalence with a software stack or

ecosystem on top of the chip that can support easy mapping of reconfigurable networks efficiently.

Lastly, a digital system can be exhaustively evaluated while still under design because of easy

availability of CAD tools and quick turnaround time for testing and verification when compared to

mixed-signal systems.

1.5 Contributions

Since neural response latency is orders of magnitude higher than the latency of digital circuits,

digital neuromorphic accelerators can usually realize faster-than-real-time sensory processing when

used to emulate similar timescales as their biological counterparts. Since SNNs are primarily used

to cut down energy requirements to ultra-low budgets, the usefulness of such an accelerator is

critically dependent on its efficiency. In this work, the concentration is on energy consumption and

attempt to control the same without incurring noticeable losses in performance. This contributions

of this work can be summarized in the following points:

• CyNAPSE, a fully digital synchronous accelerator core that can efficiently emulate SNN

inference with reconfigurable neuronal dynamics and topology, is designed and implemented.

www.manaraa.com

8

• Since SNNs are primarily a memory-intensive operation, memory access patterns of a diverse

set of SNN workloads is studied and it is observed that a very large percentage of the power

consumption in accelerating these workloads results from off-chip memory accesses.

• Accordingly, a domain-specific memory management scheme is proposed to reduce off-chip

traffic by exploiting temporal locality and cutting off redundant memory accesses. As a result,

13-44% improvement in total power consumption is obtained over the baseline.

This thesis is organized in the following way. Chapter 2 delves into the biophysical, math-

ematical and some circuit-level background required to understand neuronal dynamics in SNNs.

Chapter 3 describes the SNN benchmarks that were used for this work. Chapter 4 meticulously

describes the microarchitecture specification of the CyNAPSE neural processing system and also

its scheduling, programming and implementation. Chapter 5 motivates and describes the novel

memory management scheme, discusses the experimental setup and presents evaluation results.

Chapter 6 talks about the scope of future work and concludes.

www.manaraa.com

9

CHAPTER 2. BACKGROUND

This chapter is dedicated to provide the minimal background required to understand neural

computation as it happens in organic neural assemblies and the mathematical modeling associated

with the same. A small digression to introduce circuit design for the relevant mathematical models

is also provided.

2.1 Biophysical background

The neuron is the basic unit of neuroanatomy and is described concisely in Fig. 2.1. The mam-

malian brain is a spatially dense distribution of neurons of various types and functions. Typically, a

neuron consists of a cell-body or soma and a large number of neural processes to communicate with

other neurons. Most of these processes emerge in the form of dendrites for communication within

local clusters of neurons. Sometimes, processes develop into long cable-like fibres called axons to

facilitate communication at long spatial separations. Neurons form connections and clusters in var-

ious ways. Fig. 2.2 shows sketches of some of the typical neural assemblies observed in mammalian

brains. The human brain is an assembly of about 1011 neurons and about 1014 connections which

is a testimony to the complexity of neural circuitry. In this section, I will gradually discuss the

electrochemical processes that constitute the working of a typical neuron circuit without going into

much detail.

2.1.1 Membrane capacitance

The thin bilayer membrane of a neuron is the centre of all electrochemical activity and electri-

cally isolates the neuron from the extracellular fluid [68, 69, 6, 1]. Owing to the high polarizability

of water, the energy of an ion like sodium has a much higher energy in the interior of the membrane

than outside. This energy barrier prevents ions from entering the bilayer membrane under normal

www.manaraa.com

10

Axon Hillock
Dendrites

Synapses

Nodes of Ranvier

Myelin
Sheath

Soma Axon

Synapses

Figure 2.1: Physiology of a typical single neuron. Synaptic inputs via dendritic tree or direct axons

are integrated on the capaciance of the soma. When it exceeds threshold, an action potential is

generated at the axon hillock and propagated through the cable. Capacitance of the axon is reduced

by the myelin sheaths while nodes of ranvier regenerate the attenuated pulse amplitude at intervals

conditions. However, certain metabolic pumps actively expel Na+ ions and import K+ ions into the

cytoplasm of the soma. This results in a high K+ concentration within the membrane and a high

Na+ concentration outside (see Table 2.1). This leads to a diffusion of ions due to a concentration

gradient and a drift of ions due to the opposing electric field. The equilibrium potential whereby

these two currents counterbalance each other is known as the reversal potential of that particular

ion. Similarly, all ionic species have their own gradients and so, their own reversal potentials, and

their own ion-specific conductances that contribute to the net membrane current as:

I = (VK − V)GK + (VNa − V)GNa + (VCl − V)GCl (2.1)

where Gion and Vion are the conductances and reversal potentials for common ionic species found in

neural processes [1] while V refers to the instantaneous membrane voltage. A membrane potential

higher than VK results in a net positive current leaving the membrane. Similarly, a membrane

www.manaraa.com

11

(a) (b)

Figure 2.2: Impressions by Santiago Ramón y Cajal of (a) Purkinje cells in the cat cerebellar cortex

and (b) Pyramidal neurons in the inferotemporal cortex of the human brain. Taken from [5] where

Cajal’s drawings have been redeciphered as works of art

potential lower than VNa results in a net positive current into the membrane. Assuming that the

Cl- ion current is negligible [70], the membrane voltage V0 for zero net current is given by:

V0 =
VKGK + VNaGNa

GK +GNa
(2.2)

V0 is called the resting potential of the neuron. Using the reversal values reported in Table 2.1

and GK as 20 times GNa [70], V0 is calculated as approximately -85 milivolts although, experi-

mental conditions have a profound effect on the absolute value. In neuroscientific terminology, this

negatively charged resting state is known as a polarized state (not to be confused with electric

polarization in a dielectric medium). If an external agent (as discussed later) injects ionic currents

www.manaraa.com

12

Ionic

species

Ionic

concentration

(mM/l)

Reversal

potential

(mV)Intracellular Extracellular

K+ 400 10 -92

Na+ 50 460 55

Cl- 40 540 -65

Table 2.1: Ionic concentrations and reversal potentials observed in the giant axon of Loligo (data

from [1])

into the membrane, it is called an excitatory signal while an outward current is called an inhibitory

signal. They are said to depolarize and hyperpolarize the membrane respectively by causing finite

excursions from its resting potential. Precisely, this is done by manipulating one or more of the ionic

conductances. As has been observed in a typical axonal fibre [71], both Na+ and K+ conductances

exponentially rise with the membrane potential. This is key to the generation of a spike.

2.1.2 Action potential

Small amounts of excitatory ionic currents when injected into the membrane charge up the

membrane capacitance and depolarize the membrane potential slowly. Concomitantly, the sodium

conductance in the axon quickly rises with the voltage of the membrane. Upon reaching a certain de-

polarized state known as the threshold potential, the sodium conductance achieves a self-reinforcing

explosion. Due to this, there is a large inward current (owing to high extracellular concentration

of Na+) until the point when the Na+ reversal is reached. Thereafter, a rather slowly rising but

sustained K+ conductance pulls down the membrane potential via a net outward current of K+

ions. This sustained current remains in effect until the membrane returns to the neighborhood

of the resting potential. However, since the K+ conductance is slow to react to changes in mem-

brane potential, for sometime following the spike there is an extraneous net outward current that

hyperpolarizes the membrane below rest and it is impossible for external agents to depolarize the

capacitance at this time. This period of hyperpolarization is called the refractory period. This

www.manaraa.com

13

entire episode is collectively termed as the action potential generation and abstracted as an all-

or-nothing spike signal used for all neural computation. Physiologists Alan Hodgkin and Andrew

Huxley received the Nobel Prize in 1963 for deciphering and characterizing the action potential in

a giant squid axon [71, 70, 72, 73, 74].

2.1.3 Ion channels

It was observed that the Na+ current into the membrane changes in discrete steps [75]. This

discrete behavior is a result of channels, molecular aggregates that are selectively permeable to a

specific ion, and a population of these entities lead to net inward or outward currents. The height

of a discrete step is same for a specific membrane voltage and changes linearly with the difference

between the membrane potential and the reversal potential of the specific ion. This suggests that

the individual behavior of an ion-channel is ohmic in nature. On the other hand, the number

of steps and width of each step vary exponentially. This is because the rate of opening and the

rate of disappearance of these channels are both exponential in voltage and the discrete changes

in current is a result of a balance in open and closed ion channels. This explains the exponential

voltage-conductance relationship of ionic species in the neural processes [76, 77, 78, 79].

2.1.4 Synapses

All the biophysical machinery described so far helps in generation and propagation of action

potentials within a single neuron. This is the underlying mechanism of communication in the

neural circuitry. However, computation requires altering the potential across one membrane through

electrochemical activity in a different membrane (not unlike the transistor operation). This provides

for the basic computation in all neural processing and the synapses are responsible. I will present

here a lucid account of essential synaptic behavior that generates active control of the postsynaptic

membrane due to presynaptic activity as shown in Fig. 2.3. For detailed accounts of synaptic

circuitry, readers can refer to [80, 81].

www.manaraa.com

14

Action potential arrives

Excitatory vesicles

Inhibitory vesicles

Glutamate
GABA
Ca2+

K+

Na+

Ca2+ channel
K+ channel
Na+ channel

Glutamate receptor

GABA receptor

Presynaptic
membrane

Postsynaptic
membrane

Synaptic cleft

Figure 2.3: Basic operations of a synaptic microcircuit. Upon arrival of an action potential, Ca2+

channels open up, vesicles with neurotransmitters are released binding to specific receptors thus

opening specific ion channels of the postsynaptic neuron

A depolarization of the axonal fibre causes the concerned synapses to allow opening of calcium

channels across the synaptic cleft, a seperation of two membranes immersed in the extracellular

fluid. As a result, Ca2+ ions flow into the presynaptic membrane. This excitation causes release

of neurotransmitter molecules contained in vesicles of different kinds leading to different synaptic

species. Neurotransmitters are therefore released in quanta of molecules in the vicinity of post-

synaptic membrane and enforces opening of ion-channels in the target. The specific ion-channels

opened in the target depends on the receptors at post-membrane that these molecules bind to.

Glutamatergic receptors like α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and

N-methyl-D-aspartate (NMDA) are responsible for opening Na+ channels leading to depolariza-

tion of the target membrane, causing Excitatory post-synaptic currents or EPSCs. Conversely,

some neurotransmitters activate receptors like Gamma-Aminobutyric acid (GABA) that lead to

opening of K+ ion channels and thus, Inhibitory post-synaptic currents or IPSCs polarizing the

target-membrane further towards rest. The rate of opening of ion channels is, again, exponentially

dependent on the presynaptic voltage which triggers the onset of this entire series of electrochemical

events.

www.manaraa.com

15

Extracellular fluid

Bilayer membrane

IPgl

El

gn(t,V)

En

Cm

Figure 2.4: Schematic of the Hodgkin-Huxley neuron model. The lipid membrane is represented

by the capacitance Cm; voltage-gated ion channels and leak channel are represented by gn (nonlin-

ear) and gl (linear) respectively; the corresponding ionic gradients are modeled by En and El; Ip
represents the ionic pumps that maintain background ionic concentration

The dendritic tree of a neuron typically forms a large variety of synaptic connections with

axonal fibres from distant neurons or dendritic connections of clustered neurons thus leading to

neural networks that collectively define the computation of a population of neurons. It is also

worth mentioning that the quantal release of neurotransmitter vesicles is not characterized by a

constant synaptic strength. In fact, it is the basic site of learning in neural circuits. Biologically

plausible learning will be the focus of a future work, but for interested readers, [82, 83, 84, 85, 86, 87]

provide biophysical and phenomenological accounts of synaptic learning.

www.manaraa.com

16

2.2 Mathematical models

2.2.1 The Hodgkin-Huxley model

The behavior of real neurons described so far were very aptly captured by the Hodgkin-Huxley

neuron model, a mathematical framework for highly detailed neural modeling [74]. Fig. 2.4 shows

a simple schematic overview of the model. Mathematically, the current through the capacitance Ic

is given by:

Ic = Cm
dVm
dt

(2.3)

where Vm is the membrane voltage. Further, a particular ion-channel current Iion is given by:

Iion = gion(Vm − Vrion) (2.4)

where gion and Vrion are the conductance and reversal potentials of the particular ionic species.

Assuming only Na+ and K+ channels to be of importance, the total membrane current can be

given by:

I = Cm
dVm
dt

+ gK(Vm − VrK) + gNa(Vm − VrNa) + gl(Vm − Vl) (2.5)

where gl and Vl are the constant leak conductance and leak reversal potential respectively that model

flow of current due to the membrane’s natural permeability to background ionic concentrations.

Hodgkin and Huxley also characterized the behavior of voltage-gated ion channels by strategically

manipulating the extracellular fluid ionic concentrations and studying them individually [71]. As

a result, they postulated a set of mathematical axioms to exhaustively model the non-linear ion-

channel dynamics and linear leak dynamics of the neuron membrane. These equations are depicted

below:

I = Cm
dVm
dt

+ gKn
4(Vm − VrK) + gNam

3h(Vm − VrNa) + gl(Vm − Vl) (2.6)

dn

dt
= αn(Vm)(1 − n) − βn(Vm)n (2.7)

dm

dt
= αm(Vm)(1 −m) − βm(Vm)m (2.8)

dh

dt
= αh(Vm)(1 − h) − βh(Vm)h (2.9)

www.manaraa.com

17

where I represents membrane current per unit area. g are maximum conductance values for voltage-

gated ion and linear leak channels. m,n and h are gating variables that point to K+ and Na+

channel activations and Na+ channel inactivation respectively. The α and β parameters are the

voltage-dependent rate constants for the ion-channels. They can be expressed, in general as:

αp(Vm) = p∞(Vm)/τp (2.10)

βp(Vm) = (1 − p∞(Vm))/τp (2.11)

for p = (m,n,h) where p∞ and (1 − p∞) are the steady-state activation and inactivation probabil-

ities for each ion-channel. The above dynamics and its extensions [88, 89, 90] represent faithful

neural models that plausibly model, to a great extent, measurements from the voltage-clamp ex-

periments [91]. However, simulation of a large-scale array of these neuron models in complicated

network topologies quickly becomes intractable with available computing resources. Motivated by

this, there was a gradual interest in developing more tractable models that were able to model

biologically plausible dynamics to some extent and also support large scale simulation in software

or large scale hardware realization by providing simpler math and compact circuits, respectively. I

will discuss these models next.

2.2.2 Phenomenological models

Phenomenological model of neurons compromise some of the biological detail by simplifying

some of the more intricate model parameters, making them more suitable for large-scale simula-

tions or emulations. Instead of modeling actual electrochemical processes, such models attempt to

empirically reproduce the logical order of phenomenon in generation and propagation of action po-

tentials. An early example of a phenomenological model is the Fitzugh-Nagumo (FHN) model [92]

that describes the neuron membrane as a system of two ordinary differential equations depicting a

dynamical system. Other extensions include [93, 94, 95] and a comparative study of models exist

in [96].

www.manaraa.com

18

A rather popular and simple neuron model is the Integrate and Fire (IF) neuron model first

postulated by Louis Lapicque [97]. It is simply given by the equation:

I(t) = Cm
dVm
dt

(2.12)

whereby the time-varying membrane current I(t) results from integrating membrane voltage Vm

across the capacitance Cm. It is a point neuron model that ignores the spatial variability of the

dendritic integration process as well as the ion-channel activation and inactivation dynamics. The

action potential generation results simply from a thresholding behavior, to which a refractoy period

can be added for more plausibilty, as follows:

f(I) =
I

CmVth + trefI
(2.13)

where f is the firing frequency of the neuron dependent on membrane current I. Although it spares

theoreticians from the strenuous parameter fitting required in faithful models, the glaring short-

coming of the IF model is the eternal retention of memory due to the absence of leak conductance

which is unlikely in real neural systems.

This problem was solved by a Leaky Integrate and Fire (LIF) neuron model by introducing a

‘leak’ term to the otherwise simple point neuron model that was sufficiently simple to simulate in

large assemblies [98, 99]. A simple mathematical expression of the LIF model can be given by:

I(t) − Vm
Rm

= Cm
dVm
dt

(2.14)

Now the membrane is associated with finite resistance Rm which makes the membrane potential

decay or leak in the absence of any input current stimulus through the same membrane capacitance

Cm. As a result of this imperfect integration that is typical of ion-channel dynamics in real neurons,

the thresholding behavior can be denoted in the frequency-domain as follows:

f(I) =

0, I ≤ Ith

[tref − CmRm log(1 − Vth
IRm

)]−1, I > Ith

(2.15)

The LIF neuron model has served as the focal point of many large scale simulations and hard-

ware realizations. Therefore, it has received great attention from the computational neuroscientists.

www.manaraa.com

19

Naturally, there have been attempts to increase its plausibility without affecting its efficiency and

a number of specialized neuron models have come up that model one or more observed neural

behaviors [96] like the Quadratic IF [100], the Exponential IF [101] and the Adaptive exponential

IF [102]. Since our focus is to cater to a wide array of predominantly used neural models, pre-

scriptions from [103, 104, 82, 105, 106] is closely followed and a generalized LIF model is adopted

that can reconfigure itself along the plausibilty-efficiency line. This model can be aptly described

as follows:

RmCm
dVm(t)

dt
= −gl(Vm(t) − Vrest) − gNa(t)(Vm(t) − VrNa) − gK(t)(Vm(t) − VrK) (2.16)

where RmCm can be collectively considered as a single parameter τm which denotes the time

constant of membrane voltage decay. Eq. 2.16, very similar to Eq. 2.5 models leak and ion-channel

dynamics. However, the major bottleneck of the Hodgkin-Huxley model is avoided by having much

simpler dynamics for the nonlinear ionic conductances:

τNa
dgNa(t)

dt
= −gNa(t) (2.17)

τK
dgK(t)

dt
= −gK(t) (2.18)

and eliminating the need for gating variables altogether. Here, τNa and τK are decay time constants

for the conductances. The above set of equations model conductance-based synapses and post-

synaptic voltage-dependent current integration, which gives us a good compromise for a plausible

and simple neuron model. This is also a point neuron model which has a simple threshold and reset

behavior with a finite refractive period modeled by:

Vm(t) =

Vreset, tn ≤ t ≤ tn + tref

Vm(t), otherwise

(2.19)

when cascaded with Eq. 2.16 where Vreset is a hyperpolarized potential where the K+ conductance

levels off and tref is the refractory period that must be surmounted before LIF dynamics kick in

again after each spike for spike train:

s(t) =
∑
n

δ(t− tn) (2.20)

www.manaraa.com

20

0 50 100 150 200 250
80

60

40

20

0

20 I = 1nA

0 50 100 150 200 250

80

60

40

20

0

20 I = 1.5 nA

0 50 100 150 200 250
100

75

50

25

0

25

time (ms)

m
em

br
an

e
po

te
nt

ia
l (

m
V)

I = 2 nA

(a)

0 50 100 150 200 250
time (ms)

80

60

40

20

0

20

m
em

br
an

e
po

te
nt

ia
l (

m
V)

I = 1nA

(b)

0 50 100 150 200 250
time (ms)

60

40

20

0

20

m
em

br
an

e
po

te
nt

ia
l (

m
V)

I = 1nA

(c)

Figure 2.5: Simulation characteristics of the LIF neuron showing membrane potential traces in (a)

regular spiking, (b) tonic bursting and (c) fast spiking behaviors

Instead of 20 parameters that need meticulous fitting for equations 2.6 - 2.11, we just have

7 parameters that need fitting (τm, τNa, τK , gl, Vrest, Vreset and tref). For biologically plausible

models of neurons, the timescale of neural leak and that of voltage-dependent conductances are

observed and recommendations of the τ parameters are made. Other parameters are directly ob-

servable in vitro or in vivo [82]. Fig. 2.5 show some of the representative spiking behaviors of the

conductance-based generalized LIF neuron based on a Brian 2 [107] simulation of the aforemen-

tioned model. Fig. 2.5a shows the regular spiking behavior of a neuron with adaptation for an

input current of (from top) 1, 1.5 and 2 nA while Fig. 2.5b and Fig. 2.5c show the bursting and fast

spiking behaviors under the influence of a constant synaptic current injection of 1 nA, respectively.

These behaviors are representative of faithful point neuron models as described in [96]. While this

model is faithful to some extent and preserve computational tractability at the same time, it can be

easily configured to other models that are less or more biologically plausible as and when required

for simulation performance. For conversion into simpler models, some parameters should be set to

certain limits. Simple LIF models with constant current integration can be modeled by making

www.manaraa.com

21

τNa and τK values extremely small (directly integrate input current). Furthermore, IF models with

no leak conductance can be modeled by making τm value equal to unity and gl equal to zero. This

feature will be beneficial in 2 out of 3 workloads used in this work as referred to in Chapter 3.

2.3 Silicon neurons and synapses

2.3.1 Neurons

Although efficient neuron models have been developed that retain biological faith and can

be simulated in software simulators [107, 108, 109, 110, 111], the interest in custom hardware

realizations of neuron circuits have been a matter of great interest [112]. Fig. 2.6 shows an equivalent

circuit modelling the ion-channel and leak dynamics of a faithful neuron model [7]. The capacitance

CM integrates the input synaptic current ISY N while bias voltage VLEAK determines the leak

conductance of the circuit by a constant leak current (assuming saturation and neglecting output

resistance of the transistor). When there is no excitation, the membrane potential VM gradually

leaks to ground (Vrest is 0 here) while in presence of excitatory signal, it gradually approaches VDD.

However, whenever the membrane potential node exceeds VTHR, the differential output rises to the

positive rail.The output of inverter M4 −M5 immediately goes to ground switching on transistor

M2 and the Na+ current INa pulls up VM thus generating an action potential. Concomitantly,

inverter M6 −M7 switches on and starts charging up capacitance CREF . This represents the slow

but sustained K+ conductance rise. CREF is charged up by the current IWID and represents the

delay between Na+ and K+ channel activations i.e. the width of the spike generated. As soon as the

voltage on this node rises to a sufficient value, it switches on M3 and thereby pulls down VM back to

rest. Since the gate of an nFET has infinite impedance, the capacitance CREF discharges through

the current IREF . Therefore, this current represents the delay between K+ channel activation and

inactivation and therefore, the refractory period of the neuron.

Although the circuit of Fig. 2.6, gives a good description of emulating spike generation in

silicon, it is still not the most efficient hardware realization. Since the most critical requirement

of these circuits is to operate at extrememely low power and the timescales of neural activity are

www.manaraa.com

22

Figure 2.6: Schematic of spike generation circuit that models leak and ion-channel dynamics in a

plausible and compact way. (Inspired from [6] and [7])

much slower than natural transistor operation, we can make suitable compromises of speed for

efficiency. Operating MOSFETs in the subthreshold regime has been a very popular technique

used to precisely make this tradeoff. In this region, MOSFETs draw extremely litte current thus

dissipate extremely low power, have an exponential dependence of drain current on gate voltage

which is an attractive primitive for neural computation and easily achieve saturation leading to

large swing of voltages required for multi-stage circuits [6]. Current-mode subthreshold dynamics

have been used extensively to create compact, low-power and robust circuits for neuromorphic

designs [55].

One of the popular state-of-the-art design styles following the same underlying philosophy of

Fig. 2.6 is the Differential-Pair Integrator (DPI) neuron shown in Fig. 2.7. This neuron has been

used in large-scale systems like [59, 60] for extremely low power emulation of spiking networks.

The input stage of this neuron is a differential pair formed by transistors M2 −M3. A background

current set by Vrest is the input to the node Vdp integrating into the membrane capacitance Cmem

and represents the stable resting potential of the membrane. On a synaptic input, Iinj is added to

www.manaraa.com

23

Figure 2.7: Schematic of a Differential-pair Integrator (DPI) Neuron with spike-frequency adapta-

tion. (Inspired from [8])

this background current. A constant leak conductance is set by the bias V τ . The membrane voltage

Vmem can be quantified by a current Imem drawn by a (fictitious) nFET tied to the membrane node

as follows:

Imem =
IinIgain
Iτ

(1 − e
−t
τ) (2.21)

where Igain is a current drawn by a fictitious nFET biased by Vthr. Hence, this gain serves to set an

implicit spiking threshold for the neuron. τ can be manipulated by setting the capacitance Cmem

and Vτ . For further details regarding the differential input circuit, see [113]. When the membrane

voltage Vmem exceeds the switching threshold of the inverter M5 −M6 , a positive feedback loop

is activated via current mirror M7 −M8 supplying a current INa+ into the membrane node. It

pulls up the membrane to generate an action potential. The second cascaded inverter M9 −M10

works with current sources biased by Vwid and Vref in a similar way as before to set the spike-

width and refractory period respectively by setting the K+ channel activation and inactivation

through capacitance Cref . An additional behavior modeled by this circuit is the effect of Ca2+

www.manaraa.com

24

channels. This is known as spike frequency adaptation, a local adaptation mechanism in neurons

by which it becomes more and more difficult for a neuron to threshold with each spike in a certain

timeframe [104, 102]. It is important in competitive learning of neurons and gives a good chance

to each neuron to modulate learning in its pre-synapses. This circuit achieves this using a second

differential pair M14 −M17. Each time the Na+ channel is activated, transistor M14 is switched on

thereby drawing a after-hyperpolarization current Iahp into the calcium capacitance Cahp and results

in a constant current drawn from the membrane node. This current also has a leak conductance set

by Vlka and therefore has similar dynamics as the membrane current but in a different timescale.

With each spike, more current is drawn by the calcium node and hence makes it more difficult

for the membrane to spike. The circuit interfaces to a digital communication infrastructure that

routes spikes using the Address Event Representation (AER) protocol [114, 115, 116]. Accordingly,

it is supplied with Req and Ack signals to notify spike and start K+ activations, respectively. On

a high level, the operation of this circuit can be mathematically described as follows:

τ
d

dt
Imem = −Imem

(
1 +

Ig
Iτ

)
+ Imem∞ + INa+ (2.22)

τahp
d

dt
ICa2+ = −ICa2+ + ICa2+maxr(t) (2.23)

where Imem is the current drawn by a readout nFET transistor (not shown in Fig. 2.7) biased

by the membrane voltage Vmem i.e. Imem = I0e
kVmem
UT ; Imem∞ is given by

(
Iin
Iτ

)
I0e

kVthr
UT ; ICa2+ is

the current drawn by the nFET transistor M19 biased by the calcium conductance bias VCa2+ i.e.

ICa2+ = I0e
kV
Ca2+
UT ; ICa2+∞ is given by

(
Iahp
Ilka

)
I0e

kVthra
UT ; r(t) is given by:

r(t) =

= 1, if V

′
mem is low

= 0, if V
′
mem is high

and the usual meanings hold for subthreshold conduction in MOSFETs i.e. I0 is the leakage cur-

rent, UT is the thermal voltage and k is the subthreshold slope factor [6, 113]. Fig. 2.8 shows

an implementation of the DPI Neuron circuit in the Cadence Virtuoso custom IC design environ-

ment marked up with all functional compartments. Figs. 2.9a and 2.9b show the manipulation of

refractory periods and the spike-frequency adaptation mechanisms for the circuit, respectively.

www.manaraa.com

25

DPI Injection

Membrane

Ca2+ AHP Na+ K+

Figure 2.8: Implementation of the DPI Neuron circuit in Cadence analog design environment using

a TSMC .18um process and simulated using Spectre. The injection and ion-channel compartments

are marked in the schematic

2.3.2 Synapses

Synapses are the most numerous elements in any neural network topology and hence are one of

the central aspects of neural systems design. Accordingly, it is one of the most interesting design

problems in neuromorphic engineering. With point neuron models, the synapses linearly sum all

input currents into the post-synaptic neuron’s membrane capacitance. In case the neurons are

multi-compartmental models, synaptic dynamics must also support spatial summation to emulate

the dendritic properties accuractely [117, 118]. The differential-pair integrator described as the

neuron input stage can also be used as a linear first-order filter to provide synaptic dynamics for

highly biologically plausible modelling. It is a compact, low-power option and also has significant

gain for very narrow spike pulses to convert these digital pulses into a continuous input current for

integration into the neuron without requiring any pulse-extender circuits. For a detailed account

on synapse circuits and the DPI synapse itself, see [119].

As described in this chapter, there are numerous approaches for hardware realizations of neural

systems. In Chapter 4, a purely digital full-custom implementation of the generalized point neuron

www.manaraa.com

26

Vref = 0.2V
Vref = 0.18V
Vref = 0.16V
Vref = 0.14V
Vref = 0.12V

(a)

Vmem

VCa
2+

(b)

Figure 2.9: (a) The shape of action potential produced by the DPI Neuron circuit. It shows how

refractory periods can be modulated by controlling the bias Vref . (b) Spike frequency adaptation in

the DPI neuron circuit. The plot shows the calcium voltage and membrane voltage spikes produced

with decreased frequency within its timescale

model will be described that follows closely from the biological, mathematical and circuit equivalents

discussed in this chapter.

www.manaraa.com

27

CHAPTER 3. BENCHMARKS

In this chapter, building on the elementary concepts introduced in Chapter 2, the workloads

for the CyNAPSE system will be described. Since the target is a hardware accelerator, it’s mi-

croarchitecture is tightly coupled to the specific functionality it is expected to emulate. Therefore,

a high-level description of the wide array of workloads is provided before discussing the microar-

chitecture.

3.1 Spiking Neural Networks

As surmised in Chapter 1, Spiking Neural Networks or SNNs are neuroscientifically plausible,

low-level abstractions of real cortical networks and their dynamics. Neuron models, such as de-

scribed in Chapter 2, are used as processing units in these networks. These neurons are associated

with synapses each unique to a post-synaptic and pre-synaptic neuron and “connects” them, so

to speak. Synapses can be both excitatory or inhibitory in the sense that they can add or sub-

tract membrane voltage of the post-synaptic neuron when a spike passes through them. Similarly,

neurons can also be excitatory or inhibitory depending on what kind of synapse they trigger. The

spike is usually a digital all-or-nothing signal, an abstraction of the action potential generated in

plausible neuron models. In a network-level abstraction, usually the amplitude of the spike or its

own physiology does not contain any meaningful information. The information is contained either

in the precise timing of a spike or in its frequency or rate. Accordingly, neural data can be tempo-

ral coded or rate coded [48]. However, unlike classical neural networks, SNNs do not understand

floating point inputs and neither do they output posterior probabilities. They talk in the language

of spikes i.e. the inputs and outputs are spike trains and all semantic content surrounding an SNN

benchmark must be derived from spike trains.

www.manaraa.com

28

Input data Pre-processing Temporal coding

AER

Frames
(image,
MNIST)

Scaling and filtering Luminance to time
(linear relation)

• Single burst
• Periodic
• Jittered periodic
• Poissonian

Audio
(wav)

Band-pass filter bank

Leaky Integrate and
Fire on each filtered

frequency

Figure 3.1: Different kinds of input data, preprocessing and temporal coding methods amenable

for processing by SNN benchmarks (figure from [9])

3.1.1 Spike Inputs

Real-world time-varying or spatial data can be converted into neural response data that model

the response of sensory neurons, for example, in the retina or cochlea corresponding to vision and

audio stimuli, respectively. This process of conversion can be done in specialized hardware or by

simply a random process routine run in software. Fig 3.1 lists some ways spike input is generated.

Events in Address Event Representation (AER) format can be directly processed by any SNN

benchmark in the CyNAPSE and many other neuromorphic substrates that use AER protocol [114,

115, 116]. A direct conversion is facilitated by silicon implementations of vision and auditory sensors

like silicon retina [41, 120, 121] and cochlea [42, 122, 123] or a dynamic vision sensor [124, 125, 126].

Alternatively, a soft conversion of real-time data to spike trains is possible which is the approach

pursued in this work. For spatial data like images or individual video frames, random processes can

be used to convert pixel intensity into mean spike rates introducing some randomness in the process

to best encode sensory response. In this work, all images have been converted using poissonian

spike generation routine [127] provided by the Brian 2 simulator [107]. Time-varying data like audio

www.manaraa.com

29

signals can also be converted into essentially spatial data by frequency domain filtering and making

spiking neurons sensitive to particular bands, thus making spike signatures for those bands.

3.1.2 Inference

Inference, as in classical neural networks, requires forward pass of data through the SNN. (In

fact, the biological plausibility of a backward pass altogether is highly debated). However, as

discussed in Chapter 1, there are many important differences. Firstly, every testing example needs

to be simulated not once but multiple times equalling the number of timesteps simulated in one

example exposure period. The timestep or resolution of a network is the minimum timestep for

processing in this network (in time units) and a single example exposure is the time that network

runs for one example (also in time units). Therefore, each example is simulated for
(
exposure
resolution

)
timesteps. Secondly, in each of these timesteps, a single input unit has a finite probability of

spiking which is often directly proportional to the pixel intensity of the input frame (no. of units

= no. of pixels in frame). Since computation in all units is local, a forward communication is only

produced when there is a spike. For the input layer, synaptic weights are communicated when

the poisson process generates an input spike. For subsequent layers, communication results only

upon thresholding of spiking neurons that integrate these synaptic weights in a perfect or leaky

manner. In this way, inference in SNNs is very different from classical networks where all examples

are simulated only once but for a full forward pass through the entire network. While the latter

is fast, the former is vastly more energy efficient because spiking is essentially a sparse event by

nature.

3.1.3 Output handling

SNNs output spike trains as a signature of the network’s activity over the entire exposure period

of a testing example. This signature is used to draw semantic information about the network’s

inference. Mapping of output units to output classes varies among benchmarks. In general, handling

routines monitor spike signatures of each neuron and infer from the highest spiking neuron or

www.manaraa.com

30

All-to-all
Plastic synapses One-to-one

rigid synapses

One-to-all-but-one
rigid synapses

(lateral inhibition)

Po
is

so
ni

an
 n

eu
ro

ns

Py
ra

m
id

al
 n

eu
ro

ns

Ba
sk

et
 n

eu
ro

ns

7

784

400 400

Figure 3.2: Overview of the SCWN Benchmark architecture

population. In the following section, the three benchmarks used for this study will be described in

terms of their architecture and simulation parameters. Additionally, a layer-wise spike signature

of each network, collected across multiple example stimuli, will be provided which will denote the

underlying temporal activity of each network and establish their differences. As will be explained

in later chapters, the temporal spiking activity of a network is an important factor that determines

how much processing effort is required.

www.manaraa.com

31

3.2 Benchmark I

3.2.1 Architecture

The first benchmark is a Spiking Competitive Winner-take-all Network (hereafter referred to

as SCWN) inspired from the work in [106]. It is a recurrent neural network topology with three

layers and 1584 total neurons as shown in Fig. 3.2. The input layer consists of 784 input units

corresponding to the 28x28 pixel input field of the MNIST digit recognition dataset [128]. These

input units are poissonian neurons that are excitatory in nature but solely required for spike

generation and are modeled exclusively in software. The generated spikes are then sent via learned

(plastic) synapses in an all-to-all topology to the processing neurons in the subsequent layer which

are modeled in hardware. The second layer consists of 400 pyramidal or excitatory Leaky Integrate

and Fire (LIF) neurons. These neurons are modeled exactly as denoted by Eq. 2.16, i.e. it has all

of the excitatory (Na+), inhibitory (K+) and leak channels. They have a one-one connection with

corresponding neurons in the third layer via rigid synapses with a constant weight. The third layer

has 400 LIF neurons which are basket cells or inhibitory. They provide an inhibitory signal back

to all pyramidal cells that do not supply an input to them, again via rigid synapses, all with the

same constant weight. The ratio of these two constant weights along with this recurrent topology

simulate what is known as lateral inhibition. Through lateral inhibition, a certain pyramidal neuron

has the power to inhibit all other pyramidal neurons when it strongly spikes and therefore a winner-

take-all philosophy is established. This makes it highly suitable for recurrent competitive learning

which has extensive neuroscientific support [129, 130, 84]. The network also promotes homeostasis.

Homeostasis allows for adaptive thresholds that consolidate firing frequency of pyramidal neurons

during learning by giving all competitors a fair chance of winning [131]. The parameters used for

the pyramidal and basket cells are highly motivated by biological evidence and manipulated only

slightly to benefit performance [82].

The network has been learned using Spike Timing Dependent Plasticity (STDP), an unsuper-

vised learning technique that is very tightly coupled with learning observed in real neurons from

www.manaraa.com

32

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.3: Receptive fields of the pyramidal neurons in the SCWN showing the input sensitivity of

these neurons. Due to the Hebbian nature of learning, receptive fields can be identified as readable

patterns

hippocampal cultures [39, 85]. As a result of this learning, neurons in the pyramidal layer adjust

their pre-synaptic weights to make them selectively sensitive to a certain input pattern. These pat-

terns closely resemble the receptive fields of the V1 simple cells in the retinal sensory pathway [132]

and determine what digit fires a neuron the most, as shown in Fig. 3.3. Sometimes, as was done is

[106], this sensitivity is statistically verified during part of the learning routine to make the whole

process semi-supervised.

3.2.2 Simulation

An example digit is presented to the network for an exposure time of 350 miliseconds with

a resolution of 0.5 miliseconds, and a maximum firing frequency of 63.75 Hz. During that time,

www.manaraa.com

33

Figure 3.4: Layer-wise spiking activity in the SCWN network

all spikes produced by the pyramidal neurons are monitored for inference. Once these spikes are

collected, the number of total spikes against each class is measured using neuron class assignments.

Every neuron has been trained in a semi-supervised manner to determine the class of digit it

is sensitive to but there are multiple neurons sensitive to a certain digit thus covering different

morphologies of a certain digit found in the dataset. Based on the spiking activity, an inference is

made. Since this simulation causes significant excursion from the resting state of a neuron, a 150

milisecond resting period is afforded to ensure that the neurons return to rest before presenting the

next example. This network architecture achieves a maximum classification accuracy of 95.0% [43].

Fig. 3.4 shows the overall layer-wise activity distribution in the network.

www.manaraa.com

34

Po
is

so
ni

an
 n

eu
ro

ns

Py
ra

m
id

al
 n

eu
ro

ns

Py
ra

m
id

al
 n

eu
ro

ns

Py
ra

m
id

al
 n

eu
ro

ns

7

784

500 500

10

All-to-all
Plastic synapses All-to-all

Plastic synapses
All-to-all

Plastic synapses

Figure 3.5: Overview of the SDBN Benchmark architecture

3.3 Benchmark II

3.3.1 Architecture

The second benchmark is a Spiking Deep Belief Network (hereafter referred to as SDBN) inspired

from the work in [133]. It is a completely feed-forward fully connected topology with four layers

and a total of 1794 neurons as shown in Fig. 3.5. As any typical network solving the MNIST task,

the input layer consists of 784 poissonian neurons modeled only in software and generate poisson

spike trains for consumption of the subsequent layers. The subsequent hidden layers consists of

500 pyramidal LIF neurons. The first three layers have all-to-all fully connected synapses between

them with learned (plastic) weights. However these neurons are modeled as a subset of the total

LIF behavior of Eq. 2.16. These neurons have a leak conductance but do not have separate ion-

channel dynamics. They support only direct constant synaptic current integration as discussed in

www.manaraa.com

35

Figure 3.6: Layer-wise spiking activity in the SDBN network

Section 2.2.2. The output layer consists of 10 such LIF neurons and each denote a single output

class (digits). This network has been learned as a classical feed-forward Restricted Boltzmann

Machine using Contrastive Divergence (CD) [134, 135] and then converted into the spiking domain

with spiking LIF neurons. The standard output spike-handling is performed but unlike the previous

benchmark, there is only one neuron per output class.

3.3.2 Simulation

An example digit in this benchmark network is presented for an exposure time of 1 second for

producing spikes at a maximum frequency of 6 Hz while a resolution of 1 milisecond is exercised.

www.manaraa.com

36

P
yr

am
id

al
 n

e
u

ro
n

s

P
yr

am
id

al
 n

e
u

ro
n

s

7

4x4x16
=256

10Pyramidal neurons

Pyramidal
neurons

Pyramidal
neurons

12x12x16

8x8x16

24x24x16

Poissonian neurons

28x28

Conv.2D (5x5x16)
Plastic synapses

Avg.Pool (2x2)
Rigid synapses

Avg.Pool (2x2)
Rigid synapses

Conv.2D (5x5x16x16)
Plastic synapses

All-to-all
Plastic synapses

Figure 3.7: Overview of the SCNN Benchmark architecture

All spikes produced by the output layer is monitored and used to infer the most probable class.

This network achieves a maximum accuracy of 92% on the MNIST digit classification task. Fig. 3.6

shows the spike signatures from this network benchmark.

3.4 Benchmark III

3.4.1 Architecture

The third benchmark is a Spiking Convolutional Neural Network (hereafter referred to as

SCNN). It is a feed-forward deep neural network with convolutional, pooling and dense (fully

connected) layers as shown in Fig. 3.7. It has a total of 6 layers and 13584 neurons. Just like the

SCWN and the SDBN benchmarks, 784 input poissonian neurons are modeled in software. All the

other 12810 processing neurons are simple Integrate and Fire (IF) neurons. These neurons do not

require any leak or ion-channel dynamics in their modelling and are accommodated accordingly

using the generalized model (see Section 2.2.2). The second layer is a convolutional layer with 16

(24x24) pyramidal output maps that receive sparse input connections through 16 (5x5) filters con-

taining learned (plastic) synapses. The third layer is a subsampling layer with 16 (12x12) pyramidal

output maps that receives fixed (rigid) synaptic weights required to perform average pooling. The

www.manaraa.com

37

Figure 3.8: Layer-wise spiking activity in the SCNN network

fourth layer is also a convolutional layer having 16 (8x8) output maps through 16 (5x5x16) filters.

Similarly, the fifth layer is a subsampling layer having 16 (4x4) output maps. These maps are

flattened out and fully-connected to a final output layer of 10 pyramidal neurons with an all-to-all

connection of plastic synapses between them.

The network has been trained as a classical neural network with analog (ReLU) activation maps

using standard Error Backpropagation (BP) [38] with certain restrictions. Following training within

these limits, the network is converted into an equivalent spiking network using the prescription

provided in [43] wherein all the activation maps are switched to simple IF neurons.

www.manaraa.com

38

Spiking Competitive Winner-Take-All Network (SCWN)

Layers Neurons Synapses Neuron Model Max. Input Freq. Exposure Resolution Training Max. Accuracy

3 1584 473600 LIF 63.75 Hz 500 ms 0.5 ms STDP - WTA 95%

Layer Input Layer Excitatory Layer (forward single) Inhibitory Layer (recurrent dense)

Spke Fraction 97.8% 1.1% 1.1%

Spiking Deep Belief Network (SDBN)

Layers Neurons Synapses Neuron Model Max. Input Freq. Exposure Resolution Training Max. Accuracy

4 1794 647000 LIF 6 Hz 1000 ms 1 ms CD 92%

Layer Input Layer Layer 2 (dense) Layer 3 (dense) Output Layer (dense)

Spke Fraction 15.6% 23.7% 59.0% 1.7%

Spiking Convolutional Neural Network (SCNN)

Layers Neurons Synapses Neuron Model Max. Input Freq. Exposure Resolution Training Max. Accuracy

6 13594 652800 IF 1000 Hz 100 ms 1 ms Backpropagation 97%

Layer Input Layer Layer 2 (conv2D) Layer 3 (subsampling) Layer 4 (conv2D) Layer5 (subsampling) Output Layer (dense)

Spike Fraction 47.2% 35.7% 7.6% 7.7% 1.7% 0.1%

Table 3.1: Spiking neural network benchmarks used for this study

3.4.2 Simulation

An example digit is presented to this equivalent spiking network for a very short exposure

period of 100 miliseconds under a resolution of 1 milisecond, but with a relatively high maximum

frequency of 1 KHz. All spikes produced by the output layer is monitored for inference of the most

probable output class. A maximum accuracy of 97% on the MNIST testing dataset is achieved

using this topology, although, the deviation from the original analog neural network is negligible

as pointed out in [43]. The spiking activity of the network is shown in Fig. 3.8.

3.5 Summary

Although the three benchmarks are SNNs driven by the same inspiring philosophy of biological

neural networks, there are significant differences amongst them. While the SCWN is much more

biologically plausible, the SDBN and SCNN gradually lose plausibility as the approach begins

to take the best from both worlds - sparse efficient spike based processing and robust accurate

statistical inference of ANNs. These differences are easily seen in the layer types, the weight values,

the inference topology and most importantly, the spike footprint of the network. The spiking

activity in all these networks are very different from each other and will directly influence their

memory access patterns in a neuromorphic accelerator.

www.manaraa.com

39

For analysis of these workloads, as explained in later results, the spiking activity of all layers

of these benchmarks were monitored using a software simulator that periodically dumps internally

produced spikes within the network. The input events are available from the source during simu-

lation. This data along with a summary of most important characteristics of each benchmark or

our application, is provided in a succinct manner in Table 3.1

www.manaraa.com

40

CHAPTER 4. THE CyNAPSE ARCHITECTURE

In this chapter, I will present the CyNAPSE neuromorphic accelerator, a hardware acceleration

fabric that emulates the neural dynamics introduced in Chapter 2 and accelerates neural inference

in spiking neural networks like the benchmarks discussed in Chapter 3. The system is reconfigurable

both in terms of neural dynamics and network topology which makes it a flexible environment for

emulating SNNs of different types and functions. In the following sections, the overall system

architecture of the accelerator will be discussed, including a detailed overview of neuron circuits.

Subsequently, I will discuss scheduling, control, programmability and the details of implementation.

4.1 System Overview

4.1.1 Overall hardware architecture

Fig. 4.1 shows the overall architecture of the accelerator. The system contains three circular

FIFO queues that hold spike events. Whether a spike is generated off-chip in software (input

software-generated spikes) or on-chip in hardware (internal network-generated spikes), all spikes

are universally encoded in the Address Event Representation (AER) format [116]. In this format,

each event is associated with a Biological timestamp (BT) and a Neuron Address (NID) of the

neuron that produced this event. The Input FIFO queue enlists all poissonian input spikes from

an off-chip environment in a streaming manner. Once the network itself generates some spike, it

gets enlisted in the Auxiliary FIFO queue. If they are produced by the output layer, they are

sent to the Output FIFO queue. The system contains two routing state machines in the Input

spike router and the Internal spike router. The input router takes an event from either queue at

the front-end and looks up the weights associated with it and routes them to all relevant target

neurons. In this process, it interfaces with the Memory Controller that interfaces with CyNAPSE’s

memory hierarchy to bring the relevant synaptic weights from an Off-chip DRAM storage back

www.manaraa.com

41

Figure 4.1: The CyNAPSE microarchitecture. It has a neuron-unit with on-chip circuits emulating

LIF neurons, dendritic-tree SRAMs, an input spike router, an internal spike router , FIFO queues

holding AER events and a system controller

for further routing. The internal router just routes spikes produced on-chip to the auxiliary queue

for further processing. The system contains a Neuron Unit that is equipped with neuron circuits

and dendritic tree RAMs that efficiently perform the LIF operation by updating neuron statuses

at every timestep of the simulation and producing spikes whenever a neuron thresholds. However,

not all supported neurons are modeled on-chip. Rather, the total number of supported (logical)

neurons are multiplexed into a small number of on-chip (physical) neurons and it is required to

store the status associated with every logical neuron in the SRAM columns. Spikes produced in

the neuron unit are filtered and passed into the internal spike router. There is a System Controller

www.manaraa.com

42

with a global timer that synchronizes the working of every unit and enforces control dependencies

among them according to the user-defined timing resolution and simulation times for the network

kernel running on it.

4.1.2 Neuron design

The on-chip neuron circuitry implements the generalized integrate and fire model of Eq. 2.16.

For a digital custom circuit emulating these dynamics with a resolution of ∆t, the equation can be

rewritten in discrete-time format as follows:

∆Vm = (Vm[t+1]−Vm[t]) =
{
−gl(Vm[t]−Vrest)−gNa[t](Vm[t]−VrNa)−gK [t](Vm[t]−VrK)

}∆t

τm
(4.1)

or,

Vmem[t+ 1] = Vmem[t] − Ileak[t] + EPSC[t] − IPSC[t] (4.2)

with

EPSC[t] =
(VrNa − Vmem[t]

τm

)
∆tgNa[t] (4.3)

IPSC[t] =
(Vmem[t] − VrK

τm

)
∆tgK [t] (4.4)

Ileak[t] =
(Vmem[t] − Vrest

τm

)
∆tgl (4.5)

where EPSC and IPSC are the excitatory and inhibitory post-synaptic currents respectively

resulting from leaky Na+ and K+ conductances and Ileak is the leak current from the constant leak

conductance. The sign inside the expression for the excitatory current is intentionally reversed to

denote the typically highly positive Na+ reversal potential, thereby signifying its existence as a

‘positive supply rail’ supplying inward current into the membrane capacitance. The K+ reversal

potential works like the negative rail in that regard. Ofcourse, if a simpler model of the neuron

is required and the ionic conductances are set to zero, the parameters can be set accordingly to

realize membrane dynamics at any given voltage range.

www.manaraa.com

43

Similarly as the membrane potential, discrete-time expressions for the voltage-gated ionic con-

ductances take the following form:

gNa[t+ 1] = gNa[t] −
(gNa[t]
τNa

)
∆t+

∑
i

Siwiexc (4.6)

gK [t+ 1] = gK [t] −
(gK [t]

τK

)
∆t+

∑
i

Siwiinh (4.7)

where Si are the spiking activities of all pre-synaptic neurons while wiexc and wiinh are the weights

of excitatory and inhibitory synapses. In effect, therefore, when an excitatory neuron spikes,

the weights are added to the sodium conductance while an inhibitory spike affects the potassium

conductance. Finally ofcourse, all the membrane update Eqs. 4.3- 4.2 are skipped when the neuron

is in its refractory period while conductance updates can continue. Also, at every timestep, a

thresholding operation takes place. This can be represented as:

Vmem[t+ 1] =

Vreset, if Vmem[t+ 1] ≥ Vthresh

Vmem[t+ 1], otherwise

(4.8)

S[t+ 1] =

1, if Vmem[t+ 1] ≥ Vthresh

0, otherwise

(4.9)

where S[t + 1] is the spiking activity of the neuron in question and Vreset is the hyperpolarized

voltage of the neuron which it resets to, after generating an action potential.

Fig. 4.2 shows the implementation of the generalized LIF neuron. The input logical status

corresponds to the state of each logical neuron that multiplexes onto the given physical circuitry.

The K+ and Na+ ion channels integrate the dendritic inputs from the routing cycles of the last

timestep and the respective leaks to give the output conductance values. Simultaneously, the

membrane potential is also updated with the leak, excitatory and inhibitory currents using the

conductances of the current timestep and subsequently checked for thresholding. Additionally,

a refractory counter checks if the neuron is in refractory period using the status tref and skips

membrane updates if a non-zero tref is observed. If Vm exceeds threshold, a spike bit is released

www.manaraa.com

44

-

+

X

+

-

X

-

+
X

+

-X

+

-X

+
+

-

+

+

?-Δt/ꚌK

gl

VrNa

VrK

Vth Vreset

gNa

gK

tref

Vm

gNa

gK

tref

Vm

Σwinh

Σwexc

Na+ ion-channel

K+ ion-channel

leak-channel

In
p

u
t

Lo
gi

ca
l S

ta
tu

s
[t

]

O
u

tp
u

t
Lo

gi
ca

l S
ta

tu
s

[t
+1

]

soma axon-hillock

Vrest

to spike buffer

Δt/Ꚍm

Δt/ꚌNa

Figure 4.2: The full-custom digital generalized integrate and fire neuron. The different channels

are regions are marked. All parameters shown in gray circular units are reconfigurable in nature

and are loaded from a global parameter file

into the spike buffer. Subsequently, the next input logical status is accepted until the dendritic tree

is completely exhausted of valid logical statuses.

4.2 Scheduling and control flow

4.2.1 Core control

CyNAPSE works in a co-processor interface with a CPU that can supply software-generated

spikes and handle output spikes to perform inference. Alternatively, it can also interface with a

spiking sensor in the front-end and a motor actuator in the back-end in an embedded environment.

In any case, the input spikes are enqueued into the input FIFO in an online fashion. After the system

has been initialized and programmed with the particular kernel (neuronal dynamics, parameters,

synaptic weights and network topology), an event from the top of the queue is dequeued only if the

timestamp matches the biological time of the system as indicated by the global timer. The input

www.manaraa.com

45

Figure 4.3: Control flow of SNN emulation in the CyNAPSE Core

router reads the address of the neuron that produced this event and performs a memory lookup in

its memory hierarchy for this neuron’s post-synaptic weights. It reads the current dendritic status

of each post-synaptic neuron from the dendritic SRAMs and adds the new weight to this value.

Following that, it looks for the next synaptic connection by this neuron. When all connections for

this particular neuron have been serviced, the routing cycle is completed. In a pipelined manner, all

events that correspond to the current biological time of the system, are routed to the appropriate

dendrites. When an event of a new timestep is encountered in the input queue, a similar service is

performed on the auxiliary queue. When there are no more events in either queue that belongs to

this timestep, the system switches to its update cycle.

In the update cycle, all logical status are refreshed through accessing any one of the physical

neurons. After all the logical neuron statuses have been updated, any spikes that have been

produced in this update cycle are passed into the internal router. The system then asks the internal

spike handler to return all these events to the auxiliary queue for routing in the next timestep

while any output layer events are also sent to the output queue to be dequeued by an off-chip spike

www.manaraa.com

46

Topology Address

Page pointer

1101001001000000001...

0xdeadbeef

W[i,j]

Page Address PA[i]

Topology Vector TV[i]

=1?+

j++

...
...

...
...

ID

Neuron-specific
addresses

Off-chip memory
stack

Bitwise
arithmetic

Weight
Address

WA[n]

Figure 4.4: The control flow of a single synaptic weight lookup by the input spike router

handling prompt. This essentially completes the processing of one timestep (resolution) of the

simulation. A barrier synchronization ticks the global timer to the next timestep and simulation

resumes. Fig 4.3 graphically describes the core scheduling.

4.2.2 Memory control

For N supported logical neurons, the number of possible logical synapses would be N2 requiring

O(N2) memory. However, as networks get deeper and with more sparse layers, realistically most

of these synapses are not used at all. Therefore, storing these synapses in a fixed table of weights

in an external DRAM is highly inefficient. By adding another layer of indirection in the memory

access path, a large amount of storage efficieny can be gained. This is done by storing synaptic

weights in pages. However, unlike conventional virtual address translation, this scheme works best

without fixed page offset size, i.e. pages can be of variable sizes, since many neurons can be sparsely

www.manaraa.com

47

connected and many, densely. To make most efficient use of memory, pages of variable sizes are

enabled. Therefore, these pages are marked by their starting address called a page pointer which

is required by the router to translate to the exact address. Since all post-synaptic weights will

be accessed when it spikes, every spike is a full page access and no offset is explicitly required.

The size of a page, or the number of weights in it, is first determined by a connectivity table

called the topology matrix. A topology vector pertaining to the particular neuron is extracted and

every connection in that vector instructs the router to access the next weight in memory starting

with that neuron’s page pointer. So, the input router’s memory cycle consists of three accesses

for each event i.e. (in chronological order) a topology vector, a page pointer, and all weights of

that page using a simple bitwise arithmetic on the topology vector. This flow is shown in Fig. 4.4.

In Chapter 5 we exploit this dataflow to make informed architectural choices towards optimizing

memory accesses in SNN processing.

4.3 Programming and Reconfigurability

A single CyNAPSE core supports a maximum of N logical neurons and N2 synapses. However,

as discussed before, a smaller number X of actual physical neurons are implemented on-chip. This

also requires X dendritic tree SRAMs on-chip each holding
(
N/X

)
logical dendritic trees statuses.

The CyNAPSE interface provides pin inputs that help specify the network topology and neuron

model parameters and other parameters that will decide the benchmark details. At the same time,

the synaptic table must be updated in the above expected format for the accelerator to perform

continuous synaptic lookups. This is followed by mapping of logical neurons and statuses into the

SRAMs and physical neuron units. Mapping is done in a ‘next physical neuron every logical neuron’

fashion so that most of the load is divided as best possible among all on-chip neurons and SRAMs

and fastest inference is ensured. When mapping completes, there is a cue for inference to start and

starts when there is a response from the off-chip control environment. Thereafter the accelerator

expects simulation as long as there are events in the Input FIFO and keeps producing output

spikes for consumption by the spike handler. N and X are design-time configurable parameters. A

www.manaraa.com

48

CLK
RESET

INIT
ExtNQ
ExtDQ

RUN
ExtBTIn

ExtNIDIn
DeltaT

ExRangeLOWER
ExRangeUPPER
InRangeLOWER
InRangeUPPER

IPRangeLOWER
IPRangeUPPER

OutRangeLOWER
OutRangeUPPER

NeuStart
NeuEnd

Vmem_Init_EX
Gex_Init_EX
Gin_Init_EX

Vmem_Init_IN
Gex_Init_IN
Gin_Init_IN

TEST

V_
RE

ST
_E

X
Ta

u_
M

EM
_E

X
V_

R_
N

A_
EX

V_
R_

K_
EX

TA
U

_N
A_

EX
TA

U
_K

_E
X

Tr
ef

_E
X

V_
RE

SE
T_

EX
V_

TH
_E

X
V_

RE
ST

_I
N

TA
U

_M
EM

_I
N

V_
R_

N
A_

IN
V_

R_
K_

IN
TA

U
_N

A_
IN

TA
U

_K
_I

N
Tr

ef
_i

n
V_

RE
SE

T_
IN

V_
TH

_I
N

TE
ST

TE
ST

TE
ST

TE
ST

TE
ST

TE
ST

TE
ST

TE
ST

ExtBT_OUT
ExNID_OUT
InitCOMPLETE
W_C_EN
T_C_EN
W_RAM_ADDRESS
W_DATA_OUT
T_RAM_ADDRESS
T_DATA_OUT
SPNR_CE
SPNR_WE
SPNR_ADDRESS_IN
SPNR_DATA_IN
SPNR_DATA_OUT
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST

IN
_FIFO

_RESET
IN

_FIFO
_Q

EN
IIN

_FIFO
_EN

Q
IN

_FIFO
_D

Q
IN

_FIFO
_BT

IN
_FIFO

_N
ID

AU
X_FIFO

_RESET
AU

X_FIFO
_Q

EN
AU

X_FIFO
_EN

Q
AU

X_FIFO
_DQ

AU
X_FIFO

_BT
AU

X_FIFO
_N

ID
IN

_FIFO
_RESET

O
U

T_FIFO
_Q

EN
O

U
T_FIFO

_EN
Q

O
U

T_FIFO
_D

Q
O

U
T_FIFO

_BT
O

U
T_FIFO

_N
ID

TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST

Control Inputs

AER Inputs

Network Topology

Initial conditions

Neuron parameters

AER Outputs

RAM I/O and Control

FIFO Control

Figure 4.5: A pin diagram of the CyNAPSE Core (N = 16384, X = 64) showing an overview of

the programming signals to reconfigure the network topology, neural dynamics, initial data and

simulation data

CyNAPSE Core can be generated by configuring N and X but all neural parameters and network

topologies within these limits can be run by reconfiguring the CyNAPSE fabric, remapping the

logical-to-physical relationships and writing the synaptic and neuron metadata into memory. The

network can have all pyramidal neural dynamics or can have seperate pyramidal and basket cell

layers (see Chapter 3 for details). The pin diagram of a CyNAPSE Core is shown in Fig. 4.5.

www.manaraa.com

49

Technology TSMC .065µm CMOS

Worst-case

Clock frequency
167 MHz

Supply

voltage
0.9 V

Max. Logical

neurons
16K

Max. Logical

synapses
256K

Physical

neurons
64

Synaptic

storage

Off-chip

DRAM

Max. Synaptic

resolution
8-bytes

Arithmetic Fixed-point

Neuron-model
Reconfigurable

generalized LIF

Core logic

area
16.4 mm2

Benchmarks SCWN SDBN SCNN

Core power

dissipation (mW)
157.72 184.03 405.952

Total power

dissipation (mW)
530.123 573.48 1455.397

Table 4.1: Characteristics of synthesized CyNAPSE core used for experiments

4.4 Implementation details

The CyNAPSE Core has been completely implemented in fully synthesizable Verilog HDL and

functionally verified for all three benchmarks described in Chapter 3 using ModelSim. Although the

memory (external DRAM Synaptic weights, on-chip SRAM dendritic trees and FIFOs) were not

synthesizable, they were modeled in RTL for verification. The entire implementation is provided

for public use at the CyNAPSE RTL Repository. The logic portion of the core was synthesized

to a TSMC 65nm library using a supply voltage of 0.9V using the Cadence SOC Encounter RTL

Compiler. As will be discussed in later chapters, measuring power consumption is the prime

experimental focus of this work. From synthesized and verified netlists, representative activity

https://github.com/saunak1994/CyNAPSEv11

www.manaraa.com

50

files were dumped to characterize and estimate power consumption of the core’s logic portions.

Synopsys PrimeTime was used to annotate and estimate power from VCD and SAIF files. For the

memory structures, Ramulator [136], DRAMPower [137] and CACTI-P [138] were used to calculate

off-chip and on-chip power consumption. The details of further experimental setup are discussed

in Section 5.3. Lastly, Table 4.1 lists the characteristics of the synthesized CyNAPSE Core that

was used for further experiments in this study.

www.manaraa.com

51

CHAPTER 5. ADAPTIVE MEMORY MANAGEMENT

As seen in the microarchitecture discussion in Chapter 4, the dendritic memory resides close

to the neurons holding relevant synaptic data for the current timestep. This data is periodically

refreshed via neuron circuits during the update cycle. However, all synaptic data cannot be stored

off-chip because with deeper networks, these parameters very quickly grow out of storage resource

limits. Hence, CyNAPSE provisions off-chip DRAM synaptic storage and regularly goes there to

fetch weights. DRAM is reliable, fast and maximizes storage efficiency, an important factor for

larger and deeper network capabilities. But how does that affect its energy efficiency? In this

chapter, I will discuss CyNAPSE’s power consumption and set up a motivation for solving the

problem at hand. Following that, I will discuss caching, its applicability to CyNAPSE’s memory

system and conventional cache management policies. This will lead to a detailed description of the

proposed memory management scheme. A description of the experimental setup will be provided

before presenting the results of evaluation for the proposed policy.

5.1 Power consumption profile

For each spike generated within a Spiking Neural Network (SNN), whether from the input or

from within the network, all post-synaptic weights of the relevant neuron ID are loaded and added

onto the relevant dendritic trees. Depending on the average connectivity of the network, the amount

of time spent in the routing cycle can vary but it is always a large majority of the simulation time.

Fig. 5.1a presents a roofline analysis [139] of CyNAPSE’s routing cycle while Fig. 5.1b shows the

maximum weight data-width for a configuration to have compute-bound performance. The result

is not counterintuitive in that most artificial neural network kernels themselves are quite memory-

bound even on distributed processing hardware [21, 27, 140, 141]. Spiking networks, on top of that,

have completely local computation and extremely sparse global communication. With practical

www.manaraa.com

52
At

ta
in

ab
le

 P
er

fo
rm

an
ce

(M
D

O
PS

/s
)

Operational Intensity
(DOPS/byte)

𝑿
𝟏𝟓𝟑. 𝟓𝟔

𝑿
𝟒𝟖

41.667𝑿
Peak dendritic performance

𝑊
<
1
5
3
.5
6
/𝑋

𝑊
<
4
8
/𝑋

(a)

0 250 500 750 1000 1250 1500 1750 2000
#Physical neurons on-chip: X

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ax

im
um

 w
ei

gh
t b

it-
wi

dt
h:

 W
m

ax
 (b

yt
es

) PBW = 6.4 GBps
PBW = 2 GBps
Wmax = 2 bytes
Wmax = 4 bytes
Wmax = 8 bytes

(b)

Figure 5.1: (a) Roofline model showing constrained performance of CyNAPSE’s routing cycle

under various conditions. As we move towards lower steady-state bandwidths, higher weight bit-

widths(W) and higher physical neurons on-chip(X), performance is much more likely to be memory-

bound. (b) confirms this hypothesis. It shows how maximum weight bit-widths for compute-bound

performance vary against the physical number of neurons for two peak bandwidths (PBW): the

pin bandwidth and a lower steady-state bandwidth. The area above either curve is memory-bound

while the area below is compute-bound. It is easy to see that for most practical configurations,

CyNAPSE will have heavily memory-bound performance

data-widths, therefore, SNNs require very little compute performance and puts great pressure on

the memory path.

However, it is not clear how largely memory-bound performance affects the total power con-

sumption of CyNAPSE. A configuration with N = 16384 (sufficient for all of our benchmarks) is

taken and the power consumption of the system is measured (see Section 4.4 for details) for each

of the three benchmark networks. This includes power consumed by the logic portions of the core,

the on-chip dendritic SRAMs, the on-chip FIFOs and the off-chip DRAM storage. The resulting

profile is shown in Fig. 5.2. It can be seen that the most significant share of the system’s power

consumption results from retrieval of synaptic weights from a remote DRAM storage. One can

allocate more on-chip neurons to increase performance by making the kernels less-memory bound

but the power consumption still results highly from the memory access path. Therefore, regardless

of hardware configuration, both the importance of memory power consumption and the opportunity

www.manaraa.com

53

4 8 16 32 64 1280

20

40

60

80

100
SCWN

4 8 16 32 64 1280

20

40

60

80

100
SDBN

4 8 16 32 64 1280

20

40

60

80

100
SCNN

Physical neurons on chip

Sy
st

em
 P

ow
er

 C
on

su
m

pt
io

n
(%

)

Logic SRAM FIFO DRAM

Figure 5.2: Net system power consumption of CyNAPSE for each benchmark showing various

consumption sources

to optimize this process in such a system is quite clear. This motivates the need for architectural

exploration in this area to find possible solutions to offset the bottleneck in an efficient manner. As

has been argued, weight bit-widths are an important factor contributing to the memory bottleneck.

It is the same for power consumption of the system. Although algorithmic optimizations like prun-

ing and quantization of synaptic weights [142, 143] might help in this regard, they lead to finite

degradation in accuracy of the network. For spiking networks the allowable margin in accuracy

is low and therefore, the attempt is to make microarchitectural optimizations that are agnostic to

accuracy so that algorithmic changes are still compatible but not necessary. To that end, this work

is focussed on studying the memory access patterns and data locality in SNN processing to cleverly

mitigate redundant accesses in a workload-aware manner.

www.manaraa.com

54

5.2 Energy-efficient memory management techniques

5.2.1 Cache management policies

In general purpose computers, caches consistently exploit temporal and spatial locality of mem-

ory accesses to reduce redundant data and instruction retrieval from main memory by storing

frequently accessed items close to processing [144]. This reduces memory traffic, by distributing

it over (usually, multiple levels of) small local storage thereby improving performance and some-

times, energy-efficiency. Even in multicore computing, each core is closely coupled with its own

L1 cache and have shared later-level caches to improve core efficiency as well as overall system

efficiency [145, 146]. Since caches are fast but highly constrained storage, data needs to be tempo-

rally evicted to make way for new data allocation. In a direct-mapped cache with only one memory

block allocated to a particular index (global memory addresses separated by regular intervals), this

is a trivial problem. However, these caches miss exploitation of locality by being so strict and

have given way to set-associative caches that allocate multiple blocks or ways for a single index

(set) [147, 148]. Associativity can range from two-way till fully associative where there is a single

set and all cache blocks are ways of that set. With an efficiency in storage, comes a non-trivial

decision of which way to allocate new incoming data on. For a general-purpose computer, this is

difficult since it appeals to multiple application domains and kernels have highly variable memory

access patterns. This results in higher than normal misses in cached data and the performance

naturally degrades. While caches have benefited greatly from clever structural, functional and

compile-time adjustments [149, 150, 151, 152, 153, 154, 155, 156, 157], the amount of improvement

in performance and/or net power dissipation is still highly dependent on the replacement policy.

A good strategy of replacement is, therefore, a significant research problem in caches and their

effectiveness is often critically dependent on it [158].

Conventional cache policies are based on temporal access history to drive replacement decisions.

A classic example is Least Recently Used (LRU), a policy still used in many modern architectures

because it of its great cost-to-performance ratio. Even less hardware cost is incurred in implement-

www.manaraa.com

55

ing random replacement policy, wherein a random way is selected for eviction. While they perform

reasonably well for general purpose workloads to a certain extent, it has been pointed out that the

degree of associativity in a cache limits their capacity to model unique references to the same cache

block [159]. In the subject of replacement policies, the early work of L.A Belady [160] laid down

the guidelines for an optimal replacement policy for virtual memory systems which hold for hard-

ware caches as well. Simply put, Belady’s policy suggests replacing the block that is re-referenced

farthest in time from the present. However, this requires a practically infeasible view of the future

accesses. Building on the same, policies like DIP [161], RRIP [162], LIRS [163] have explored spec-

ulative architectural techniques for general purpose processors to equip set-associative caches with

the ability to predict re-reference of every cache block and therefore make replacement decisions

based on dynamically collected past access data. However, because of the nature of event-driven

simulation, CyNAPSE can indeed exploit some forward visibility in memory accesses. Because

there exists a finite number of future spike events listed in the input FIFO queue, there is a scope

to improve locality by (pre)fetching neuron metadata and post-synaptic weights related to the neu-

ron ID in these events. The amount of forward visibility is proportional to the relative difference

in latency between allocating its cache and processing one spike event in entirety. Also, for neural

inference, there is no requirement of writing to cache (or memory), which in effect is equivalent

to having just an instruction cache in the hierarchy. Therefore, given a domain-specific simulation

framework, a domain-specific memory management policy is proposed to capture memory behavior

specific to the SNN kernels that conventional policies fail to account for.

5.2.2 Proposed management strategy

As discussed in Section 4.2.1, the simulation of the SNN kernel starts off as soon as the Input

FIFO is populated with initial events from an off-chip poissonian or natural spike source. There-

after, as the nature of FIFO dictates, further events are enqueued at the FIFO write pointer only

upon the dequeue of one event from the read pointer. The dequeued neuron ID induces its own

synaptic lookup process from the input router through the memory hierarchy. At the same time,

www.manaraa.com

56

the queue already contains F more events where F is the length of the input FIFO. The first level

cache in the hierarchy can look into the queue to monitor these events and accordingly allocate

its contents in a deterministic way for accesses that are guaranteed in the future by tagging the

allocated blocks with a reuse score: number of times the block is expected to be used in the future.

As such, two times for each event may be defined: a read-time i.e. when an event is read by the

cache for prefetching, but not actually dequeued from the FIFO queue and route-time i.e. when

this event is eventually dequeued for synaptic lookup and dendritic placements. Before the start of

simulation, the cache is warmed-up with events in the queue to give the reading, its necessary head

start over the routing. This cost in latency is amortized in a short while owing to improvements in

performance and energy consumption throughout simulation. However, this is not usually done to

the full extent of the length of the queue (FIFO lengths can be very large since they don’t typically

demand much hardware resources or energy expenditure). Rather, a certain lookahead distance is

selected carefully to exploit reuse without incurring sizeable thrashing (unwanted eviction) from

events that are re-referenced later. After warming up, there is one read per completed route and

the simulation proceeds accordingly. The policy can be described in detail using each type of cache

hit/miss scenarios that is typical in cache accesses [147] as follows.

5.2.2.1 Compulsory miss at warm-up and read-time

When an event is monitored off the queue at its read-time, all relevant memory addresses

corresponding to its metadata and synaptic data (see Section 4.2.2) are generated using network

kernel information. So, an unallocated way in the cache is now tagged and the import from main

memory (or next level cache) is started. At warm-up, there is no contention from the routing

because it has not started yet but queue read requests need to be serviced even when there is. This

requires a cache with two independent read-write ports. Although, depending on the steady state

DRAM bandwidth, multiple read requests can be served within the regime of one routing cycle,

this work studies a one-to-one ratio to keep the design sufficiently simple to achieve and evaluate

the benefit from it. A future focus would be to consider multiplying this ratio. A compulsory miss

www.manaraa.com

57

means the concerned block was encountered for the first time since the last time that the cache

was flushed [147]. Thus, all blocks with a compulsory miss are marked with a reuse score of one,

which basically refers to one guaranteed access at route-time to this block in the future.

5.2.2.2 Hit at read-time

After a while, there can be a hit in the cache of an already allocated block that has been

encountered before, whether from the same neuron ID or from a closely residing one in the memory.

On a hit, the only course of action within the cache is to increase the reuse score of the block by one.

No further import request is issued to the next level and the next event in the queue is monitored.

5.2.2.3 Capacity or conflict miss at read-time

Depending on cache capacity, there will be misses at a certain point in the simulation at read-

time. This is either due to limited capacity or limited associativity [147]. This requires eviction

of a way in order to make room for new data. However, there are potential issues that concern

read-time replacements. Accordingly, three different approaches are proposed:

• Conservative approach: Blocks that have multiple guaranteed accesses can be thrashed by

blocks that do not end up with a lot of reuse and will therefore lead to heightened thrash-

ing at read-time and redundant memory traffic at route-time leading to unnecessary energy

consumption. Hence, conservative approach does not allow any read-time replacements.

• Aggressive approach: By disallowing read-time replacement totally, there will be loss of reuse

from blocks that do end up generating a great amount of reuse and will also lead to redundant

traffic at multiple routes. Hence, aggressive approach allows all read-time replacements by

evicting the way with the lowest reuse score.

• Intelligent approach: Read-time replacements are only allowed when the minimum reuse score

in the concerned set is less than a certain reconfigurable reuse threshold. This, theoretically,

cuts down on missing reuse blocks while also limiting the introduction of thrashable blocks

because of low reuse score.

www.manaraa.com

58

Under any scheme, if and when a read-time replacement scheme actually takes place, the new block

is similarly tagged with a reuse score of one.

5.2.2.4 Compulsory miss at route-time

Since all blocks are encountered at least once before the route, there are no compulsory misses at

route-time. There are misses only when the read-time policy, for instance, opts out of replacement

or is thrashed by a later block before one of its route-times is reached.

5.2.2.5 Hit at route-time

A hit at route-time essentially means that one of the guaranteed future accesses to a particular

block has now been realized. This is therefore associated with the decrement of the reuse score by

one.

5.2.2.6 Policy miss at route-time

The management policy, as discussed above, can opt-out or thrash read out blocks before any or

all of their route-accesses are served. This leads to a miss at route-time. This requires the router to

issue an import request at route-time to the next level for the relevant block/s. In order to allocate

this in the cache, the simple scheme of evicting the lowest reuse score block is proposed. This is

because, in the baseline scheme, allocation is compulsory. This is revised in a later discussion. If an

allocation does take place, the block is used up instantly since it has been requested at route-time.

So, the reuse score of the freshly imported block is a zero as there are no guaranteed future accesses

to this block. The entire baseline scheme is summarized in Fig. 5.3.

5.2.3 Network-adaptive enhancements

The proposed scheme works precisely because the input events are generated at a significantly

higher throughput than the expected latency of completing a single route-cycle for a particular

event. However, besides the input events, spikes generated within the network have to be served

www.manaraa.com

59

ID

L1Cache Request

HitHit Miss

Reuse
++

Reuse
++

NL Cache
Request

(Reuse = 1)

HitMiss

j++

Reuse
++

NL Cache
Request

(Reuse = 1)

Read-time
replacement ?

ID

L1Cache Request

HitHit Miss

Reuse
--

Reuse
--

NL Cache
Request

(Reuse = 0)

HitMiss

j++

Reuse
--

NL Cache
Request

(Reuse = 0)

Route-time
replacement ?

Read-time Route-time

Figure 5.3: Baseline memory control strategy in read-time and route-time access of cache

as well and are produced in the timestep directly preceding their routing. This gives very poor

forward visibility for internally generated events. As shown in Chapter 3, the input acitivity

can have varying relative importance to internal activity and therefore, some benchmarks with

significant internal activity might not benefit from the proposed scheme at all. This motivates

the need for network-specific enhancements that adaptively equip the scheme to changing activity

patterns throughout simulation.

The CyNAPSE core is programmed with compile-time network information like layer types

(conv2d, dense, subsampling), excitatory and inhibitory neuron ranges, neuron parameters etc.

This is static information that can provide network-specific enhancements rightaway and adap-

www.manaraa.com

60

1 2 3 4 5 6 7 8 9 10
Test Example batch

100

101

102

Sp
ik

e
Fr

ac
tio

ns
 (%

)

(a)

1 2 3 4 5 6 7 8 9 10
Test Example batch

101

Sp
ik

e
Fr

ac
tio

ns
 (%

)

(b)

1 2 3 4 5 6 7 8 9 10
Test Example batch

100

101

Sp
ik

e
Fr

ac
tio

ns
 (%

)

(c)

Input
Layer2

Layer3
Layer4

Layer5
Output

ABT=2

Figure 5.4: Dynamic spike statistics generated by CyNAPSE software simulator to adaptively han-

dle memory requests.(a), (b) and (c) show layer-wise activity fractions for the SCWN, SDBN and

SCNN benchmarks respectively with time and how they compare to the activity bypass threshold

(ABT)

tively extend our proposed strategy. Furthermore, behavioral diagnostics can provide dynamic

information like spiking activity of different layers to identify high-activity as well as dormant re-

gions of a network. The source of all this information is the auxiliary queue, where all internally

generated spikes reside at some point. In this work, queue statistics are dumped after the simula-

tion of a single batch of example stimuli and dynamic information is computed. This progressively

helps to improve the policy. Spiking activity, for example, is collected at a layer-by-layer granular-

ity. Individual neuron spiking information can also be collected but this leads to very high storage

and logic overhead which can offset the energy savings expected. Therefore, a layer granularity

www.manaraa.com

61

for diagnostics was chosen. Fig 5.4 shows the dynamic statistics collected over 10 batches of test

examples for each network benchmark while simulating on the CyNAPSE software simulator (see

Section 5.3). Two techniques are proposed in this regard, to extend the management strategy.

5.2.3.1 Cache bypassing

All three benchmarks have significantly varying spike signatures throughout their layers. The

SCWN benchmark, for instance, shows very little internal activity compared to the high degree

of input activity generated for it. The distribution is highly skewed in favor of the poissonian

spikes in the input layer and the corresponding input neuron IDs. Therefore, this network is

inherently suited for our baseline scheme and should benefit greatly from it. However, the SDBN

and SCNN benchmarks have different distributions to this and to each other. The internal activity is

considerably higher and in case of the SDBN, even higher than the input activity. For networks that

have considerable internal activity, a bypass scheme in the cache is proposed. Neurons belonging to

sparse activity layers are allowed to bypass cache allocation so that neurons in high activity layers

are not thrashed by contention. This information can be static: for example, output layer neurons

for feed-forward networks that do not have any post-synaptic connections, or dynamic: for example,

low activity neurons in simulation. For dynamic information, an Activity Bypass Threshold (ABT)

for average layer activity is maintained below which, all neurons of the concerned layer are granted

a bypass request and above which, allocation at route-time is enforced. On a bypass request, the

memory control does not allocate a cache way and issues a one-time retrieval request for all meta

and synaptic data belonging to that neuron ID.

5.2.3.2 Line protection

Similar to extremely dormant regions in a network, there can be internal regions of heightened

activity. For examples, layers 2 and 3 of the SDBN and layer 2 of the SCNN, show relatively high

activity when compared to other layers. The baseline management scheme does not cover these

neurons and can lead to redundant accesses when compared to conventional replacement policies.

www.manaraa.com

62

1 2 3 4 5 6 7 8 9 10
Test Example batch

102

103

104

105

106
M

ea
n

Re
us

e
Di

st
an

ce

(in
 #

ev
en

ts
)

Input
Layer2
Layer3
Layer4
Layer5

Layer6
SCWN
SDBN
SCNN

Figure 5.5: Layer-wise mean reuse distances shown for all layers in all benchmarks

To avoid that, a line protection scheme is proposed that protects the cache lines that hold the data

corresponding to the neuron IDs belonging to layers of high activity (all layers above ABT). This

is done by tagging these lines with a probable reuse score dynamically determined from network

diagnostics collected in the software simulator. For reference, the mean reuse distances of different

layers in all three benchmarks are shown in Fig. 5.5. The probable reuse score should be inversely

proportional to this distance to effectively account for the expected number of reuses within a time

window.

5.3 Experimental Infrastructure

The implementation details of the low level design was discussed in Section 4.4. Here, I will

discuss the experimental setup for high-level exploration of the memory subsystem. A CyNAPSE

software simulator has been built for this purpose. This software simulation models CyNAPSE’s

neuron model and core architecture in an object-oriented fashion with discrete timestepped simu-

lation. In other words, it maintains a one-one equivalence with the hardware architecture thereby

confirming accurate hardware results. However, the simulation is not cycle-accurate. Therefore, no

performance or energy consumption measures are taken directly from it. Instead, the simulator is

used to dump statistics and diagnostic information about specific benchmarks using which, it can

better adapt the caching scheme. The cache is simulated by an in-house cache simulator which can

www.manaraa.com

63

be easily interfaced with the software simulation tool. The cache simulator provides statistics like

tag array and data array accesses per spike, hit rate, miss profile etc. By using the software simula-

tor, memory traffic can be dumped into an address trace file. This address trace can be converted

into a DDR3 command trace using Ramulator [136]. Ramulator sets up a config with the speed, ar-

chitecture and organization of the DRAM and generates JEDEC standard command traces relevant

to that memory chip. These command traces are then routed to DRAMPower 3.1 [137] in a similar

organization, speed and architecture configuration, to estimate the energy consumption of these

traces. For this work, a 256MB DDR3 x8 DRAM with a 1600MHz pin bandwidth was used which

provides sufficient storage for all the benchmarks used. Although, the precision requirements of

each network can be different, 8-byte precision is used in all benchmarks to have a fair comparison

of memory access patterns.

Using the energy consumption of traces and timing information from the core netlist simulations,

power consumption of the memory subsystem was calculated. For the logic portions, as discussed in

Section 4.4, activity files annotated with the benchmarks provide power consumption. In a cached

configuration, the power consumption is measured using the same experimental flow, except, cache

simulator statistics like tag and data array accesses are coupled with CACTI’s UCA cache energy

estimates to model net power consumption of caches [138].

For evaluating the dynamic adaptive enhancements, the simulator provides simple routines to

dump FIFO queue contents after each batch, calculate the statistics required, feeds them into

the cache simulator and restarts the simulation from the last checkpoint after forwarding the cache

contents. Fig. 5.6 summarizes the experimental infrastructure across low-level design and high-level

exploration. One limitation of this experimental setup is the insufficient simulation time. Owing

to very long individual simulations, only a subset of the MNIST dataset with 100 test examples (in

10 batches) was used. However, the 100 examples were chosen uniformly to contain equal number

of random examples from all classes so as to offset any bias in the simulation infrastructure.

www.manaraa.com

64

TEST
BENCHES

ADDRESS
TRACES

MEM
TRAFFIC

NETLIST
(VCD/SAIF)

LOGIC
POWER

DRAM
ENERGY

CACHE
ENERGY

TOTAL
SYSTEM
POWER

IN-HOUSE TOOLS

VENDOR PROVIDED
and/or OPEN SOURCE

DATA/METRICS

CyNAPSE
CORE RTL

BENCHMARK
SUITE

CyNAPSE
SIMULATOR

CACHE
CONFIG

SYNOPSYS
PRIMETIME

RAMULATOR +
DRAMPOWER

CACTI-P

TIMING

INFORMATION

CADENCE
ENCOUNTER

Figure 5.6: Experimental infrastructure and flow of data between tools

5.4 Results

Three design parameters for caches, in general, were explored first, with conventional cache

management policies. These are block-size, associativity and cache depth (number of cache blocks).

After exploring all these design parameters using a binary search and staying within area constraints

of the total logic chip area, the configuration with the best return-on-investment was selected. For

the benchmarks used in this study, on average, this configuration was a 256 KB 4-way set-associative

cache with 64 byte blocks. This was selected as the operating point for all comparisons to ensure

fairness of evaluation and similarly provisioned alternatives in this work. In this section, I will first

validate the assumption from Section 5.2.2.3 about read-time replacements and attempt to explain

the results of exploration. Using this verdict, I will evaluate the effectiveness of the proposed scheme

in general, for each benchmark, in comparison to conventional management schemes in reducing

www.manaraa.com

65

1 2 3 4 5 6 7 8 9 10
Test Example Batch

400

800

1200

1600
To

ta
l S

ys
te

m
 P

ow
er

Co
ns

um
pt

io
n

(m
W

)

Conservative
Aggressive
Intelligent

SCWN
SDBN
SCNN

Figure 5.7: Experimental results of exploring different read-time replacement policies for each

benchmark

total system power consumption. At the same time, the relative benefits of extending the policy

to include dynamic adaptive network-specific enhancements are also quantified.

5.4.1 Read-time replacement

As mentioned before, the CyNAPSE software simulator provides real-time statistics in the core.

Similarly, the cache simulator provides hooks to select and dump cache contents at regular intervals

as desired. It also provides a log of replacement decisions and an image of the set before and after

the decision. Using the average reuse scores for evicted blocks, a minimum reuse threshold was fixed

for each benchmark. This is required to validate the intelligent approach to read-time replacements.

Fig. 5.7 shows the results of experiments on read-time replacement policies.

For all three benchmarks, the intelligent approach outperforms the conservative and aggressive

approaches. Aggressive approach opts for replacing all conflicts which essentially nullifies locality

by ignoring reuse cores of blocks already allocated when reading from the queue. Conservative ap-

proach also ignores reuse opportunities by totally opting out of any replacement at all. This leads

to redundant accesses at route-time. However, unlike conservative, aggressive approach also leads

to severe ping-ponging of blocks at read-time which particularly worsens the situation. Therefore,

conservative approach performs better than aggressive, on average for all benchmarks. For bench-

www.manaraa.com

66

1 2 3 4 5 6 7 8 9 10
Test Example batch

300

400

500
To

ta
l S

ys
te

m
 P

ow
er

Co
ns

um
pt

io
n

(m
W

)

no Caching

LRU

Proposed policy
(static adaptive)
Proposed policy
(dynamic adaptive)

Random

Figure 5.8: Comparative analysis of replacement policies towards savings in net system power

consumption for the SCWN benchmark

marks with long reuse distances (e.g. SCNN), the loss due to read-replacement policies is much

smaller than benchmarks with shorter reuse distance (e.g. SCWN).

5.4.2 LRU vs Random vs Proposed policy

This section evaluates total system power consumption as a function of time (test example

batches) for all three benchmarks. With similarly provisioned cache configurations, the conventional

replacement policies are compared with the proposed policy.

5.4.2.1 SCWN

Fig. 5.8 shows the evaluation for the SCWN benchmark. The SCWN has a much lower overall

spiking activity when compared to the others. On an average, it produces 2.14404 spikes per

timestep (including internal spikes) or 2144.04 spikes per test example. To induce a stable inference,

each input poissonian neuron needs to generate multiple spikes. This makes SCWN highly amenable

to neuron data reuse and exploitation of temporal locality. In short timescales, it is well captured

by LRU. For every example, there are also some winner pyramidal neurons in the winner-take-all

circuit that will generate higher than usual activity when inhibiting the basket cell neurons. 85-90%

of all cache misses are profiled as capacity misses so they are not limited by associativity of the

www.manaraa.com

67
W

i,j

W
i,j

i*N + j where N = #neurons in layer i*N + j where N = #neurons in layer

SCWN SDBN

Figure 5.9: Difference in distribution of synaptic weights in SCWN and SDBN showing large

synaptic weights reaching up to the subthreshold ranges for the latter, and sufficiently small weights

for the former.

cache. Random replacement, on the other hand, cannot capture reuse beyond example digits, but

if a cache is sufficiently associative, it can still handle conflicts close to LRU.

The proposed policy collects reuse information for all layers in the SCWN from reuse distances

both within and beyond a single example stimulus. An activity bypass threshold (ABT) of 2% is set

explicitly and dynamic network-adaptive scheme is evaluated. Since SCWN is largely dominated

by input events that represents 97.8% of the network’s spike signatures, the baseline scheme itself

performs very well in this benchmark only with static adaptive enhancements (with cache bypass

requests). With the dynamic enhancements, the improvement is very little since it only appeals to

the remaining 2.2% of the internal activity.

www.manaraa.com

68

1 2 3 4 5 6 7 8 9 10
Test Example batch

480

520

560

To
ta

l S
ys

te
m

 P
ow

er
Co

ns
um

pt
io

n
(m

W
)

no Caching

LRU

Proposed policy
(static adaptive)
Proposed policy
(dynamic adaptive)

Random

Figure 5.10: Comparative analysis of replacement policies towards savings in net system power

consumption for the SDBN benchmark

5.4.2.2 SDBN

The spike signatures from the SDBN benchmark are significantly different from the SCWN. The

input frequency is larger much larger and as shown in Fig. 5.9, the weights of the SDBN are close

to or even exceed the rest-to-threshold (or reset-to-threshold) range of the internal neurons making

it very easy for them to spike. Therefore, the input events (3.99056 spikes per timestep or 3990.56

spikes per example digit) ends up inducing very high internal spiking that multiplies with deeper

layers. Particularly, the third layer has a very high spiking activity. Due to low input activity, most

of the reuse is captured well by LRU. So relative benefits from switching to the proposed policy

are modest. Fig. 5.10 shows the trend.

However, on applying dynamic adaptive schemes with the same ABT, a much greater relative

savings in system power consumption is observed. Reuse scores inversely proportional to dynami-

cally observed reuse distances are progressively applied to the internal neurons for line protection.

Most neurons in the third layer benefit highly from these enhancements and therefore, a marked

improvement is observed for this benchmark.

5.4.2.3 SCNN

The convolutional neural network has a very high overall activity throughout the network. It

produces a total of 219.2259 spikes per timestep or 21922.59 spikes per test example on an average.

www.manaraa.com

69

1 2 3 4 5 6 7 8 9 10
Test Example batch

1200
1250
1300
1350
1400
1450
1500
1550
1600

To
ta

l S
ys

te
m

 P
ow

er
Co

ns
um

pt
io

n
(m

W
)

no Caching

LRU

Proposed policy
(static adaptive)
Proposed policy
(dynamic adaptive)

Random

Figure 5.11: Comparative analysis of replacement policies towards savings in net system power

consumption for the SCNN benchmark

It has a much longer neuron reuse distance in all layers when compared to the other benchmarks.

With a cache of limited capacity, conventional cache policies find it very difficult to capture any

locality. A healthy fraction of the input activity is, nevertheless, targeted by the proposed policy.

Fig. 5.11 shows a comparative analysis for this benchmark which shows the proposed policy clearly

outperforming LRU and random.

It can be noted that there is a great difference between the static adaptive scheme and dynam-

ically enhanced scheme for the SCNN for similar reasons as the SDBN. However, many neurons in

the processing conv2D and average pooling layers are inactive for all stimuli because of the com-

monly known observation of sparse activations in convolutional neural networks [164]. Therefore,

very few neurons request allocation under a line protected enhancement. Therefore, SCNN benefits

much lesser in percentage when compared to the relative savings in the SDBN benchmark.

5.5 Summary

The proposed policy outperforms the conventional cache management policies for all bench-

marks. In general, for benchmarks having a high degree of biological plausibility, the normalized

synapses lead to sparser activity in deeper layers and hence the proposed scheme with static en-

hancements are very well suited to the kernel. In trained-converted classical networks, however,

the activity can have erratic patterns which requires dynamically adapting the scheme to perform

www.manaraa.com

70

SCWN SDBN SCNN

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Sy
st

em
 P

ow
er

 C
on

su
m

pt
io

n
(m

W
)

no Caching
Random
LRU
static adaptive
dynamic adaptive

Figure 5.12: A graphical summary of the evaluation

satisfactorily for these kernels. Even so, the distribution of layer types causes great variation in the

effectiveness of the scheme. The results are summarized graphically in Figure 5.12 and numerically

in Table 5.1.

Table 5.1: Relative energy savings achieved using different policies

Benchmark
LRU
v/s

baseline

Random
v/s

baseline

Proposed Policy
(static adaptive)

v/s
baseline

Proposed Policy
(dynamic adaptive)

v/s
baseline

Proposed Policy
v/s

LRU

SCWN 28.13% 25.99% 44.13% 44.45% 22.71%

SDBN 5.46% 2.88% 7.65% 15.55% 10.67%

SCNN 5.12% 4.59% 7.4% 12.61% 7.9%

www.manaraa.com

71

CHAPTER 6. FUTURE-WORK AND CONCLUSIONS

6.1 Extensions

In this work, a single operating point was compared by carefully allocating similar provisions

to all considered policies. However, not all structural configurations in caches react similarly to

all replacement policies. One of the imminent future extensions will be to study various operating

points and explore the design space further.

As mentioned in Section 5.2.2.1, depending on steady state DRAM bandwidth, more than one

read requests can be served within the time a single event route is completed. This provides the

scope of a higher number of total reads within a route cycle. This can be studied in simulation and

possibly checked for coherency and other issues if sizable efficiency gains are observed.

Lastly, individual parameters like lookahead lengths, reuse thresholds, bypass thresholds etc.

can be explored for potentially interesting experimental waypoints.

6.2 Architectural enhancements

A possible future work is to look at processing larger benchmarks with increased processing

demands. This will require greater compute performance and parallel processing could be key. A

multi-core CyNAPSE architecture can be explored with coarse-grain multiprocessing that can share

neuron-processing of a single layer in a single timestep across multiple nodes and thereby complete

simulation of a timestep faster since there are no data hazards between different neurons within a

timestep. Apart from faster inference, this might also save more energy by saving more memory

traffic at each node with reduced local storage and more hierarchical caching. Fig. 6.1 shows a

conceptual sketch of the possible hierarchy in such a multi-core system. With this, opportunities

to explore a number of architectural design points will appear, like interconnect architectures,

network-on-chip, communication protocols etc.

www.manaraa.com

72

C_1 C_2 C_3

C_4 C_5 C_6

Local Synaptic Store

C_A C_B C_C

C_D C_E C_F

C_G C_H C_I

L1 L1L1

L1 L1L1

Figure 6.1: Conceptual diagram showing a possible avenue of future work. The multi-core system

could consist of individual processing clusters (C A, C B etc.) and communication infrastructure

connecting these clusters. Each cluster could contain multiple CyNAPSE cores (C 1, C 2 etc.) with

their private L1 caches and a local synaptic storage adding another large reservoir to the multilevel

memory hierarchy.

Another possible optimization within the CyNAPSE core could be towards controlling leakage

power dissipation since majority of its logic power consumption is in the idle state. This includes

simple techniques in the CAD process like gating or architectural techniques like sleep modes in

SRAMs [165] or drowsy caches [153] to reduce the core power consumption.

A software stack with a tailor-made compiler infrastructure can lead to large performance and

energy improvements. Compiler-driven optimizations on neural network inference have already

been demonstrated [166, 167]. A parser for a high-level language for SNN description coupled with

a domain-specific compiler stack can be highly beneficial for the project in the future.

www.manaraa.com

73

Besides neuromorphic acceleration, the memory management policy presented in this work can,

in general, be applied to any event-driven framework, with relevant modifications. It can be consid-

ered for an execution model with queue-based input instructions at its front end. Any simulation

hardware with these characteristics such as embedded performance and energy counters [168] or

general purpose emulators [169] can be benefit from this scheme, if allocation latency at read time

can be tolerated by the latency of each individual instructions through the pipeline.

6.3 Learning

As discussed in Chapter 2, plasticity in the synaptic strength or weights are the primary site of

learning in real neurons. The benchmarks used in this study, however, have all been offline trained

and accelerated at inference using the CyNAPSE fabric. Online and incremental learning is very

important in modern applications as it makes a dramatic improvement in overall performance

and reduces pressure on datacenters by bringing more computation to the edge. A very lucrative

avenue of future work is to equip CyNAPSE with online learning capabilities and then study the

resulting memory access patterns and make recommendations in a similar way to reduce the memory

bottleneck and energy consumption.

6.3.1 Evolving neural networks

On the one hand, there has been a sustained interest in evolving spiking neural networks [170,

171, 172, 173, 174] because of the amount of neuroscientific support from observable evolving net-

works in vitro and further from in vivo data. On the other hand, early research in Neuroevolution

had generated great interest in simultaneous learning of weights and topology using genetic algo-

rithms [175, 176, 177, 178, 179, 178, 180]. Since then, a number of works [181, 182, 183, 184, 185]

have reported evolving neural networks using either an adaptation of [180] or fundamentally dif-

ferent approaches. However, the benefits of hardware acceleration in this space is inconclusive for

purely biologically plausible networks or hybrid SNN-ANN approaches.

www.manaraa.com

74

Figure 6.2: Schematic of a synaptic crossbar consisting of CMOS neurons integrated with memris-

tive devices sandwiched within CMOS interconnects (figure from [10])

6.3.2 Emerging Devices

Memristive devices [186, 187, 188] have emerged as an attractive solid-state nanoscale candi-

date for synaptic implementations [10, 189]. They are dense, reliable and gradually being made

compatible with CMOS processes for large-scale fabrication. They have been used in neuromorphic

implementations in diverse ways [190, 189]. CyNAPSE uses off-chip DRAM storage because of the

large amount of storage demanded by large networks. There is a scope of multiplexed, off-chip and

on-chip storage of weights using dense devices whose cost can be amortized through the instinctive

low-cost learning they provide for spiking biologically plausible systems [191, 192, 193, 194]. Fig. 6.2

shows the implementation of a memristive synapse based neural network in hardware. Other emerg-

ing devices like PCM [195, 196], Ferroelectric FETs [197, 198] and STT-RAMs [199, 200] can also

be considered for online learning synaptic implementations.

www.manaraa.com

75

6.4 Conclusion

In this thesis, CyNAPSE was presented in design and implementation. It is a reconfigurable

acceleration fabric for processing spiking neural networks. Although it has a sparse computa-

tion that leads to inherent efficieny over classicial neural networks, the computation is still losing

quite a lot of power by going to an off-chip storage and retrieving synaptic weights. By using an

application-specific caching strategy, up to 44% power savings was achieved over the baseline and

it outperformed LRU by up to 22%. Because these benchmarks are so different in their original

architecture, their training and conversion and come with varying degrees of biological realism and

spike activities, the effectiveness of the scheme differs for every workload.

With this work, I expect to make future recommendations on network-specific neuromorphic

hardware acceleration which can best manage the memory bottleneck of CyNAPSE architecture

while still enjoying the benefits of a simple, scalable and efficient digital design. I also expect to

contribute to this field by enabling a more resourceful and easily available platform for neuromorphic

applications.

www.manaraa.com

76

BIBLIOGRAPHY

[1] B. Katz, Nerve, muscle, and synapse. McGraw-Hill, 1966.

[2] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of representative
deep neural network architectures,” IEEE Access, vol. 6, pp. 64 270–64 277, 2018.

[3] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp. 668–
673, 2014.

[4] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and
J. S. Plank, “A survey of neuromorphic computing and neural networks in hardware,” arXiv
preprint arXiv:1705.06963, 2017.

[5] L. W. Swanson, E. Newman, A. Araque, and J. M. Dubinsky, The beautiful brain: the drawings
of Santiago Ramón y Cajal. Abrams, 2017.

[6] C. Mead, Analog VLSI and Neural Systems. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[7] A. Van Schaik, “Building blocks for electronic spiking neural networks,” Neural networks,
vol. 14, no. 6-7, pp. 617–628, 2001.

[8] P. Livi and G. Indiveri, “A current-mode conductance-based silicon neuron for address-event
neuromorphic systems,” in 2009 IEEE international symposium on circuits and systems.
IEEE, 2009, pp. 2898–2901.

[9] O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, “Design exploration methodology for
memristor-based spiking neuromorphic architectures with the xnet event-driven simulator,”
in 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).
IEEE, 2013, pp. 7–12.

[10] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memris-
tor device as synapse in neuromorphic systems,” Nano letters, vol. 10, no. 4, pp. 1297–1301,
2010.

[11] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C. Van Esesn,
A. A. S. Awwal, and V. K. Asari, “The history began from alexnet: a comprehensive survey
on deep learning approaches,” arXiv preprint arXiv:1803.01164, 2018.

[12] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural networks:
A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[13] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural
network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, 2017.

www.manaraa.com

77

[14] W. De Mulder, S. Bethard, and M.-F. Moens, “A survey on the application of recurrent
neural networks to statistical language modeling,” Computer Speech & Language, vol. 30,
no. 1, pp. 61–98, 2015.

[15] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad,
“State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11,
p. e00938, 2018.

[16] S. Mahdavifar and A. A. Ghorbani, “Application of deep learning to cybersecurity: A survey,”
Neurocomputing, 2019.

[17] M. Paganini, L. de Oliveira, and B. Nachman, “Accelerating science with generative adver-
sarial networks: an application to 3d particle showers in multilayer calorimeters,” Physical
review letters, vol. 120, no. 4, p. 42003, 2018.

[18] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,
J. Totz, Z. Wang et al., “Photo-realistic single image super-resolution using a generative
adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4681–4690.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierar-
chical image database,” in 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[20] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified graphics
and computing architecture,” IEEE micro, vol. 28, no. 2, pp. 39–55, 2008.

[21] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers et al., “In-datacenter performance analysis of a tensor processing
unit,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2017, pp. 1–12.

[22] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 1, pp. 127–138, 2016.

[23] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “Diannao family: energy-efficient hardware
accelerators for machine learning,” Communications of the ACM, vol. 59, no. 11, pp. 105–112,
2016.

[24] T. Luo, S. Liu, L. Li, Y. Wang, S. Zhang, T. Chen, Z. Xu, O. Temam, and Y. Chen,
“Dadiannao: A neural network supercomputer,” IEEE Transactions on Computers, vol. 66,
no. 1, pp. 73–88, 2016.

[25] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.
Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 14–26, 2016.

www.manaraa.com

78

[26] A. Podili, C. Zhang, and V. Prasanna, “Fast and efficient implementation of convolutional
neural networks on fpga,” in 2017 IEEE 28th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2017, pp. 11–18.

[27] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers,
“Finn: A framework for fast, scalable binarized neural network inference,” in Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
ACM, 2017, pp. 65–74.

[28] Y. Li and A. Pedram, “Caterpillar: Coarse grain reconfigurable architecture for accelerat-
ing the training of deep neural networks,” in 2017 IEEE 28th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2017, pp. 1–10.

[29] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang, “F-cnn: An fpga-
based framework for training convolutional neural networks,” in 2016 IEEE 27th International
Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE,
2016, pp. 107–114.

[30] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan, J. Choi, S. Mueller,
A. Agrawal, T. Babinsky et al., “A scalable multi-teraops deep learning processor core for
ai trainina and inference,” in 2018 IEEE Symposium on VLSI Circuits. IEEE, 2018, pp.
35–36.

[31] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42pj/decision 3.12 tops/w robust in-
memory machine learning classifier with on-chip training,” in 2018 IEEE International Solid-
State Circuits Conference-(ISSCC). IEEE, 2018, pp. 490–492.

[32] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang, “Time: A training-in-
memory architecture for memristor-based deep neural networks,” in Proceedings of the 54th
Annual Design Automation Conference 2017. ACM, 2017, p. 26.

[33] G. Desoli, N. Chawla, T. Boesch, S.-p. Singh, E. Guidetti, F. De Ambroggi, T. Majo, P. Zam-
botti, M. Ayodhyawasi, H. Singh et al., “14.1 a 2.9 tops/w deep convolutional neural network
soc in fd-soi 28nm for intelligent embedded systems,” in 2017 IEEE International Solid-State
Circuits Conference (ISSCC). IEEE, 2017, pp. 238–239.

[34] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie: efficient
inference engine on compressed deep neural network,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 243–254.

[35] R. C. O’Reilly and Y. Munakata, Computational explorations in cognitive neuroscience: Un-
derstanding the mind by simulating the brain. MIT press, 2000.

[36] Y. Freund and R. E. Schapire, “Large margin classification using the perceptron algorithm,”
Machine learning, vol. 37, no. 3, pp. 277–296, 1999.

[37] W. Gerstner, “Spiking neurons,” MIT-press, Tech. Rep., 1998.

[38] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning representations by back-
propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

www.manaraa.com

79

[39] G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hippocampal neurons: depen-
dence on spike timing, synaptic strength, and postsynaptic cell type,” Journal of neuroscience,
vol. 18, no. 24, pp. 10 464–10 472, 1998.

[40] D. G. Stork, “Is backpropagation biologically plausible,” in International Joint Conference
on Neural Networks, vol. 2. IEEE Washington, DC, 1989, pp. 241–246.

[41] M. Mahowald, “The silicon retina,” in An Analog VLSI System for Stereoscopic Vision.
Springer, 1994, pp. 4–65.

[42] B. Wen and K. Boahen, “A silicon cochlea with active coupling,” IEEE transactions on
biomedical circuits and systems, vol. 3, no. 6, pp. 444–455, 2009.

[43] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-classifying, high-
accuracy spiking deep networks through weight and threshold balancing,” in 2015 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, 2015, pp. 1–8.

[44] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha, “Backpropagation
for energy-efficient neuromorphic computing,” in Advances in Neural Information Processing
Systems, 2015, pp. 1117–1125.

[45] E. Hunsberger and C. Eliasmith, “Spiking deep networks with lif neurons,” arXiv preprint
arXiv:1510.08829, 2015.

[46] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks using back-
propagation,” Frontiers in neuroscience, vol. 10, p. 508, 2016.

[47] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and D. Rasmussen,
“A large-scale model of the functioning brain,” science, vol. 338, no. 6111, pp. 1202–1205,
2012.

[48] C. Eliasmith and C. H. Anderson, Neural engineering: Computation, representation, and
dynamics in neurobiological systems. MIT press, 2004.

[49] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78, no. 10, pp.
1629–1636, 1990.

[50] D. Attwell and S. B. Laughlin, “An energy budget for signaling in the grey matter of the
brain,” Journal of Cerebral Blood Flow & Metabolism, vol. 21, no. 10, pp. 1133–1145, 2001.

[51] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120db 30mw asynchronous vi-
sion sensor that responds to relative intensity change,” 2006 IEEE International Solid State
Circuits Conference - Digest of Technical Papers, pp. 2060–2069, 2006.

[52] C. Brändli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240× 180 130 db 3µs latency
global shutter spatiotemporal vision sensor,” IEEE Journal of Solid-State Circuits, vol. 49,
no. 10, pp. 2333–2341, 2014.

[53] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-based neuromorphic
systems. John Wiley & Sons, 2014.

www.manaraa.com

80

[54] K. Boahen, “A neuromorph’s prospectus,” Computing in Science & Engineering, vol. 19,
no. 2, pp. 14–28, 2017.

[55] A. G. Andreou, K. A. Boahen, P. O. Pouliquen, A. Pavasovic, R. E. Jenkins, and K. Stro-
hbehn, “Current-mode subthreshold mos circuits for analog vlsi neural systems,” IEEE Trans-
actions on neural networks, vol. 2, no. 2, pp. 205–213, 1991.

[56] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri, “Neuromorphic electronic circuits
for building autonomous cognitive systems,” Proceedings of the IEEE, vol. 102, no. 9, pp.
1367–1388, 2014.

[57] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M. Bussat,
R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-
digital multichip system for large-scale neural simulations,” Proceedings of the IEEE, vol. 102,
no. 5, pp. 699–716, 2014.

[58] A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith,
R. Manohar, and K. Boahen, “Braindrop: A mixed-signal neuromorphic architecture with a
dynamical systems-based programming model,” Proceedings of the IEEE, vol. 107, no. 1, pp.
144–164, 2019.

[59] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri,
“A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons
and 128k synapses,” Frontiers in neuroscience, vol. 9, p. 141, 2015.

[60] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture with
heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dy-
naps),” IEEE transactions on biomedical circuits and systems, vol. 12, no. 1, pp. 106–122,
2017.

[61] T. Yu, J. Park, S. Joshi, C. Maier, and G. Cauwenberghs, “65k-neuron integrate-and-fire array
transceiver with address-event reconfigurable synaptic routing,” in 2012 IEEE Biomedical
Circuits and Systems Conference (BioCAS). IEEE, 2012, pp. 21–24.

[62] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G.-J. Nam et al., “Truenorth: Design and tool flow of a 65 mw
1 million neuron programmable neurosynaptic chip,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, 2015.

[63] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and A. D.
Brown, “Overview of the spinnaker system architecture,” IEEE Transactions on Computers,
vol. 62, no. 12, pp. 2454–2467, 2012.

[64] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor with on-chip learning,”
IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[65] D. Neil and S.-C. Liu, “Minitaur, an event-driven fpga-based spiking network accelerator,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 12, pp.
2621–2628, 2014.

www.manaraa.com

81

[66] J. Shen, D. Ma, Z. Gu, M. Zhang, X. Zhu, X. Xu, Q. Xu, Y. Shen, and G. Pan, “Darwin:
a neuromorphic hardware co-processor based on spiking neural networks,” Science China
Information Sciences, vol. 59, no. 2, pp. 1–5, 2016.

[67] Y. Kim, Y. Zhang, and P. Li, “A reconfigurable digital neuromorphic processor with mem-
ristive synaptic crossbar for cognitive computing,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 11, no. 4, p. 38, 2015.

[68] A. L. Lehninger, “The neuronal membrane.” Proceedings of the National Academy of Sciences
of the United States of America, vol. 60, no. 4, p. 1069, 1968.

[69] L. J. Gentet, G. J. Stuart, and J. D. Clements, “Direct measurement of specific membrane
capacitance in neurons,” Biophysical journal, vol. 79, no. 1, pp. 314–320, 2000.

[70] A. L. Hodgkin and A. F. Huxley, “Currents carried by sodium and potassium ions through
the membrane of the giant axon of loligo,” The Journal of physiology, vol. 116, no. 4, pp.
449–472, 1952.

[71] A. L. Hodgkin, A. F. Huxley, and B. Katz, “Measurement of current-voltage relations in the
membrane of the giant axon of loligo,” The Journal of physiology, vol. 116, no. 4, pp. 424–448,
1952.

[72] A. L. Hodgkin and A. F. Huxley, “The components of membrane conductance in the giant
axon of loligo,” The Journal of physiology, vol. 116, no. 4, pp. 473–496, 1952.

[73] A. Hodgkin and A. Huxley, “The dual effect of membrane potential on sodium conductance
in the giant axon of loligo,” The Journal of Physiology, vol. 116, no. 4, p. 497, 1952.

[74] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its
application to conduction and excitation in nerve,” The Journal of physiology, vol. 117, no. 4,
pp. 500–544, 1952.

[75] B. U. Keller, R. P. Hartshorne, J. A. Talvenheimo, W. A. Catterall, and M. Montal, “Sodium
channels in planar lipid bilayers. channel gating kinetics of purified sodium channels modified
by batrachotoxin.” The Journal of general physiology, vol. 88, no. 1, pp. 1–23, 1986.

[76] J. M. Dubois, M. F. Schneider, and B. I. Khodorov, “Voltage dependence of intramembrane
charge movement and conductance activation of batrachotoxin-modified sodium channels in
frog node of ranvier.” The Journal of general physiology, vol. 81, no. 6, pp. 829–844, 1983.

[77] M. I. Behrens, A. Oberhauser, F. Bezanilla, and R. Latorre, “Batrachotoxin-modified sodium
channels from squid optic nerve in planar bilayers. ion conduction and gating properties.”
The Journal of general physiology, vol. 93, no. 1, pp. 23–41, 1989.

[78] M. Eisenberg, J. E. Hall, and C. Mead, “The nature of the voltage-dependent conductance
induced by alamethicin in black lipid membranes,” The Journal of membrane biology, vol. 14,
no. 1, pp. 143–176, 1973.

[79] B. Hille, “Ionic channels in excitable membranes. current problems and biophysical ap-
proaches,” Biophysical Journal, vol. 22, no. 2, pp. 283–294, 1978.

www.manaraa.com

82

[80] G. M. Shepherd, The synaptic organization of the brain. Oxford university press, 2003.

[81] G. Shepherd, “Microcircuits in the nervous system.” Scientific American, vol. 238, no. 2, pp.
93–103, 1978.

[82] F. Jug, “On competition and learning in cortical structures,” Ph.D. dissertation, ETH Zurich,
2012.

[83] M. F. Bear and R. C. Malenka, “Synaptic plasticity: Ltp and ltd,” Current opinion in
neurobiology, vol. 4, no. 3, pp. 389–399, 1994.

[84] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-
dependent synaptic plasticity,” Nature neuroscience, vol. 3, no. 9, p. 919, 2000.

[85] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological models of synaptic plastic-
ity based on spike timing,” Biological cybernetics, vol. 98, no. 6, pp. 459–478, 2008.

[86] W. M. Kistler, “Spike-timing dependent synaptic plasticity: a phenomenological framework,”
Biological cybernetics, vol. 87, no. 5-6, pp. 416–427, 2002.

[87] D. Wang, “A neural model of synaptic plasticity underlying short-term and long-term habit-
uation,” Adaptive Behavior, vol. 2, no. 2, pp. 111–129, 1993.

[88] M. Forrest, “Can the thermodynamic hodgkin-huxley model of voltage-dependent conduc-
tance extrapolate for temperature?” Computation, vol. 2, no. 2, pp. 47–60, 2014.

[89] K. Pakdaman, M. Thieullen, and G. Wainrib, “Fluid limit theorems for stochastic hybrid
systems with application to neuron models,” Advances in Applied Probability, vol. 42, no. 3,
pp. 761–794, 2010.

[90] Q. Zheng and G.-W. Wei, “Poisson–boltzmann–nernst–planck model,” The Journal of chem-
ical physics, vol. 134, no. 19, p. 194101, 2011.

[91] D. Johnston and S. M.-S. Wu, Foundations of cellular neurophysiology. MIT press, 1994.

[92] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane,”
Biophysical journal, vol. 1, no. 6, pp. 445–466, 1961.

[93] R. Rose and J. Hindmarsh, “The assembly of ionic currents in a thalamic neuron i. the three-
dimensional model,” Proceedings of the Royal Society of London. B. Biological Sciences, vol.
237, no. 1288, pp. 267–288, 1989.

[94] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,” Biophysical
journal, vol. 35, no. 1, pp. 193–213, 1981.

[95] H. R. Wilson, “Simplified dynamics of human and mammalian neocortical neurons,” Journal
of theoretical biology, vol. 200, no. 4, pp. 375–388, 1999.

[96] E. M. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE transactions on
neural networks, vol. 15, no. 5, pp. 1063–1070, 2004.

www.manaraa.com

83

[97] N. Brunel and M. C. Van Rossum, “Lapicque’s 1907 paper: from frogs to integrate-and-fire,”
Biological cybernetics, vol. 97, no. 5-6, pp. 337–339, 2007.

[98] C. Koch and I. Segev, Methods in neuronal modeling: from ions to networks. MIT press,
1998.

[99] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations, plas-
ticity. Cambridge university press, 2002.

[100] P. E. Latham, B. Richmond, P. Nelson, and S. Nirenberg, “Intrinsic dynamics in neuronal
networks. i. theory,” Journal of neurophysiology, vol. 83, no. 2, pp. 808–827, 2000.

[101] L. Badel, S. Lefort, R. Brette, C. C. Petersen, W. Gerstner, and M. J. Richardson, “Dynamic
iv curves are reliable predictors of naturalistic pyramidal-neuron voltage traces,” Journal of
Neurophysiology, vol. 99, no. 2, pp. 656–666, 2008.

[102] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity,” Journal of neurophysiology, vol. 94, no. 5, pp. 3637–3642,
2005.

[103] R. Jolivet, T. J. Lewis, and W. Gerstner, “Generalized integrate-and-fire models of neuronal
activity approximate spike trains of a detailed model to a high degree of accuracy,” Journal
of neurophysiology, vol. 92, no. 2, pp. 959–976, 2004.

[104] R. Jolivet, A. Rauch, H.-R. Lüscher, and W. Gerstner, “Integrate-and-fire models with adap-
tation are good enough,” in Advances in neural information processing systems, 2006, pp.
595–602.

[105] W. Gerstner and R. Naud, “How good are neuron models?” Science, vol. 326, no. 5951, pp.
379–380, 2009.

[106] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-timing-
dependent plasticity,” Frontiers in computational neuroscience, vol. 9, p. 99, 2015.

[107] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in neuroscience, vol. 3, p. 26,
2009.

[108] M. L. Hines and N. T. Carnevale, “The neuron simulation environment,” Neural computation,
vol. 9, no. 6, pp. 1179–1209, 1997.

[109] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen, X. Choo,
A. Voelker, and C. Eliasmith, “Nengo: a python tool for building large-scale functional brain
models,” Frontiers in neuroinformatics, vol. 7, p. 48, 2014.

[110] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet,
and P. Yger, “Pynn: a common interface for neuronal network simulators,” Frontiers in
neuroinformatics, vol. 2, p. 11, 2009.

[111] J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig, “Pynest: a convenient
interface to the nest simulator,” Frontiers in neuroinformatics, vol. 2, p. 12, 2009.

www.manaraa.com

84

[112] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik, R. Etienne-Cummings,
T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud et al., “Neuromorphic silicon neuron
circuits,” Frontiers in neuroscience, vol. 5, p. 73, 2011.

[113] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas, Analog VLSI: circuits and
principles. MIT press, 2002.

[114] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie, “Silicon auditory
processors as computer peripherals,” in Advances in Neural Information Processing Systems,
1993, pp. 820–827.

[115] S. R. Deiss, R. J. Douglas, A. M. Whatley et al., “A pulse-coded communications infrastruc-
ture for neuromorphic systems,” Pulsed neural networks, pp. 157–178, 1999.

[116] K. A. Boahen, “Point-to-point connectivity between neuromorphic chips using address
events,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 47, no. 5, pp. 416–434, 2000.

[117] J. V. Arthur and K. Boahen, “Recurrently connected silicon neurons with active dendrites for
one-shot learning,” in 2004 IEEE International Joint Conference on Neural Networks (IEEE
Cat. No. 04CH37541), vol. 3. IEEE, 2004, pp. 1699–1704.

[118] D. P. Northmore and J. G. Elias, “Building silicon nervous systems with dendritic tree neu-
romorphs,” Pulsed neural networks, pp. 135–156, 1998.

[119] C. Bartolozzi and G. Indiveri, “Synaptic dynamics in analog vlsi,” Neural computation,
vol. 19, no. 10, pp. 2581–2603, 2007.

[120] K. A. Boahen and A. G. Andreou, “A contrast sensitive silicon retina with reciprocal
synapses,” in Advances in neural information processing systems, 1992, pp. 764–772.

[121] T. Delbruck, “Silicon retina with correlation-based, velocity-tuned pixels,” IEEE Transac-
tions on Neural Networks, vol. 4, no. 3, pp. 529–541, 1993.

[122] S. Wang, T. J. Koickal, G. Enemali, L. Gouveia, L. Wang, and A. Hamilton, “Design of a
silicon cochlea system with biologically faithful response,” in 2015 International Joint Con-
ference on Neural Networks (IJCNN). IEEE, 2015, pp. 1–7.

[123] A. v. Schaik, T. J. Hamilton, and S.-C. Liu, “Silicon cochleas,” Event-Based Neuromorphic
Systems, pp. 71–89, 2015.

[124] M. Yang, S.-C. Liu, and T. Delbruck, “A dynamic vision sensor with 1% temporal contrast
sensitivity and in-pixel asynchronous delta modulator for event encoding,” IEEE Journal of
Solid-State Circuits, vol. 50, no. 9, pp. 2149–2160, 2015.

[125] D. P. Moeys, F. Corradi, C. Li, S. A. Bamford, L. Longinotti, F. F. Voigt, S. Berry, G. Taverni,
F. Helmchen, and T. Delbruck, “A sensitive dynamic and active pixel vision sensor for color or
neural imaging applications,” IEEE transactions on biomedical circuits and systems, vol. 12,
no. 1, pp. 123–136, 2017.

www.manaraa.com

85

[126] T. Delbruck, “Neuromorophic vision sensing and processing,” in 2016 46th European Solid-
State Device Research Conference (ESSDERC). IEEE, 2016, pp. 7–14.

[127] D. Heeger, “Poisson model of spike generation,” Handout, University of Standford, vol. 5, pp.
1–13, 2000.

[128] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database,” URL http://yann. lecun.
com/exdb/mnist, 1998.

[129] W. Zieglgansberger, E. D. French, G. R. Siggins, and F. E. Bloom, “Opioid peptides may ex-
cite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons,” Science,
vol. 205, no. 4404, pp. 415–417, 1979.

[130] M. C. Van Rossum, G. Q. Bi, and G. G. Turrigiano, “Stable hebbian learning from spike
timing-dependent plasticity,” Journal of neuroscience, vol. 20, no. 23, pp. 8812–8821, 2000.

[131] C. Clopath, L. Büsing, E. Vasilaki, and W. Gerstner, “Connectivity reflects coding: a model
of voltage-based stdp with homeostasis,” Nature neuroscience, vol. 13, no. 3, p. 344, 2010.

[132] N. C. Rust, O. Schwartz, J. A. Movshon, and E. P. Simoncelli, “Spatiotemporal elements of
macaque v1 receptive fields,” Neuron, vol. 46, no. 6, pp. 945–956, 2005.

[133] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-time classification and
sensor fusion with a spiking deep belief network,” Frontiers in neuroscience, vol. 7, p. 178,
2013.

[134] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural
computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[135] G. Hinton, “A practical guide to training restricted boltzmann machines,” Momentum, vol. 9,
p. 1, 2010.

[136] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram simulator,” IEEE
Computer architecture letters, vol. 15, no. 1, pp. 45–49, 2015.

[137] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens, “Drampower:
Open-source dram power & energy estimation tool,” URL: http://www. drampower. info,
vol. 22, 2012.

[138] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-p: Architecture-
level modeling for sram-based structures with advanced leakage reduction techniques,” in
Proceedings of the International Conference on Computer-Aided Design. IEEE Press, 2011,
pp. 694–701.

[139] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual performance
model for floating-point programs and multicore architectures,” Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2009.

[140] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based accelerator
design for deep convolutional neural networks,” in Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

www.manaraa.com

86

[141] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards uniformed
representation and acceleration for deep convolutional neural networks,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[142] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural
networks: Training neural networks with low precision weights and activations,” The Journal
of Machine Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[143] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural network with
pruning, trained quantization and huffman coding,” CoRR, vol. abs/1510.00149, 2016.

[144] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Else-
vier, 2011.

[145] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, “Multi-core cache hierarchies,”
Synthesis Lectures on Computer Architecture, vol. 6, no. 3, pp. 1–153, 2011.

[146] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling,” in 32nd International Symposium on
Computer Architecture (ISCA’05). IEEE, 2005, pp. 408–419.

[147] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu caches,” IEEE Transactions on
Computers, vol. 38, no. 12, pp. 1612–1630, 1989.

[148] D. A. Patterson and J. L. Hennessy, Computer Organization and Design MIPS Edition: The
Hardware/Software Interface. Newnes, 2013.

[149] N. J. Richardson and C. A. Stack, “Pipelined non-blocking level two cache system with
inherent transaction collision-avoidance,” Feb. 2003, uS Patent 6,519,682.

[150] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative cache for high
performance and low energy consumption,” in Proceedings. 1999 International Symposium
on Low Power Electronics and Design (Cat. No. 99TH8477). IEEE, 1999, pp. 273–275.

[151] T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetching for high-performance
processors,” IEEE transactions on computers, vol. 44, no. 5, pp. 609–623, 1995.

[152] D. H. Albonesi, “Selective cache ways: On-demand cache resource allocation,” in MICRO-32.
Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture.
IEEE, 1999, pp. 248–259.

[153] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches: simple
techniques for reducing leakage power,” in ACM SIGARCH Computer Architecture News,
vol. 30, no. 2. IEEE Computer Society, 2002, pp. 148–157.

[154] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache structure for wire-
delay dominated on-chip caches,” in Acm Sigplan Notices, vol. 37, no. 10. ACM, 2002, pp.
211–222.

www.manaraa.com

87

[155] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,
“Compiler-directed instruction cache leakage optimization,” in Proceedings of the 35th an-
nual ACM/IEEE international symposium on Microarchitecture. IEEE Computer Society
Press, 2002, pp. 208–218.

[156] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “When cache blocking of sparse
matrix vector multiply works and why,” Applicable Algebra in Engineering, Communication
and Computing, vol. 18, no. 3, pp. 297–311, 2007.

[157] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers,” in ACM SIGARCH Computer Architecture News,
vol. 18, no. 2SI. ACM, 1990, pp. 364–373.

[158] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni, “A survey on
cache management mechanisms for real-time embedded systems,” ACM Computing Surveys
(CSUR), vol. 48, no. 2, p. 32, 2015.

[159] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum, “Improving
cache management policies using dynamic reuse distances,” in 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2012, pp. 389–400.

[160] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,” IBM
Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[161] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion policies
for high performance caching,” ACM SIGARCH Computer Architecture News, vol. 35, no. 2,
pp. 381–391, 2007.

[162] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block prediction for last-level
caches,” in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2010, pp. 175–186.

[163] S. Jiang and X. Zhang, “Lirs: an efficient low inter-reference recency set replacement policy
to improve buffer cache performance,” ACM SIGMETRICS Performance Evaluation Review,
vol. 30, no. 1, pp. 31–42, 2002.

[164] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W.
Keckler, and W. J. Dally, “Scnn: An accelerator for compressed-sparse convolutional neural
networks,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2017, pp. 27–40.

[165] H. Jiao, Y. Qiu, and V. Kursun, “Variations-tolerant 9t sram circuit with robust and low
leakage sleep mode,” in 2016 IEEE 22nd International Symposium on On-Line Testing and
Robust System Design (IOLTS). IEEE, 2016, pp. 39–42.

[166] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and
A. Krishnamurthy, “Tvm: end-to-end optimization stack for deep learning,” arXiv preprint
arXiv:1802.04799, pp. 1–15, 2018.

www.manaraa.com

88

[167] M. W. Moskewicz, F. N. Iandola, and K. Keutzer, “Boda-rtc: Productive generation of
portable, efficient code for convolutional neural networks on mobile computing platforms,”
in 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). IEEE, 2016, pp. 1–10.

[168] F. Bellosa, “The benefits of event: driven energy accounting in power-sensitive systems,” in
Proceedings of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new
challenges for the operating system. ACM, 2000, pp. 37–42.

[169] J. Bauer, M. Bershteyn, I. Kaplan, and P. Vyedin, “A reconfigurable logic machine for
fast event-driven simulation,” in Proceedings 1998 Design and Automation Conference. 35th
DAC.(Cat. No. 98CH36175). IEEE, 1998, pp. 668–671.

[170] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spiking neural networks for audio-
visual information processing,” Neural Networks, vol. 23, no. 7, pp. 819–835, 2010.

[171] N. Kasabov, “Evolving spiking neural networks and neurogenetic systems for spatio-and
spectro-temporal data modelling and pattern recognition,” in IEEE World Congress on Com-
putational Intelligence. Springer, 2012, pp. 234–260.

[172] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dynamic evolving spiking neural net-
works for on-line spatio-and spectro-temporal pattern recognition,” Neural Networks, vol. 41,
pp. 188–201, 2013.

[173] S. Soltic and N. Kasabov, “Knowledge extraction from evolving spiking neural networks with
rank order population coding,” International Journal of Neural Systems, vol. 20, no. 6, pp.
437–445, 2010.

[174] S. Schliebs, M. Defoin-Platel, S. Worner, and N. Kasabov, “Integrated feature and parameter
optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic
models,” Neural Networks, vol. 22, no. 5-6, pp. 623–632, 2009.

[175] D. Chen, C. Giles, G. Sun, H. Chen, Y. Lee, and M. Goudreau, “Constructive learning of
recurrent neural networks,” in IEEE International Conference on Neural Networks. IEEE,
1993, pp. 1196–1201.

[176] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm that constructs
recurrent neural networks,” IEEE transactions on Neural Networks, vol. 5, no. 1, pp. 54–65,
1994.

[177] J. urgen Branke, “Evolutionary algorithms for neural network design and training,” in Pro-
ceedings of the 1st Nordic Workshop on Genetic Algorithms and its Applictions. Citeseer,
1995.

[178] F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between cellular encoding and direct
encoding for genetic neural networks,” in Proceedings of the 1st annual conference on genetic
programming. MIT Press, 1996, pp. 81–89.

[179] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE, vol. 87, no. 9, pp.
1423–1447, 1999.

www.manaraa.com

89

[180] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topolo-
gies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

[181] T. Desell, “Large scale evolution of convolutional neural networks using volunteer computing,”
in Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM,
2017, pp. 127–128.

[182] Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional neural networks for image
classification,” arXiv preprint arXiv:1710.10741, 2017.

[183] S. S. Tirumala, S. Ali, and C. P. Ramesh, “Evolving deep neural networks: A new prospect,”
in 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowl-
edge Discovery (ICNC-FSKD). IEEE, 2016, pp. 69–74.

[184] J. Wu, J. Long, and M. Liu, “Evolving rbf neural networks for rainfall prediction using hybrid
particle swarm optimization and genetic algorithm,” Neurocomputing, vol. 148, pp. 136–142,
2015.

[185] F. Ruehle, “Evolving neural networks with genetic algorithms to study the string landscape,”
Journal of High Energy Physics, vol. 2017, no. 8, p. 38, 2017.

[186] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit theory,
vol. 18, no. 5, pp. 507–519, 1971.

[187] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor
found,” nature, vol. 453, no. 7191, p. 80, 2008.

[188] J. M. Tour and T. He, “Electronics: The fourth element,” Nature, vol. 453, no. 7191, p. 42,
2008.

[189] T. Chang, Y. Yang, and W. Lu, “Building neuromorphic circuits with memristive devices,”
IEEE Circuits and Systems Magazine, vol. 13, no. 2, pp. 56–73, 2013.

[190] C. Sung, H. Hwang, and I. K. Yoo, “Perspective: A review on memristive hardware for
neuromorphic computation,” Journal of Applied Physics, vol. 124, no. 15, p. 151903, 2018.

[191] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-
Barranco, “Stdp and stdp variations with memristors for spiking neuromorphic learning sys-
tems,” Frontiers in neuroscience, vol. 7, p. 2, 2013.

[192] B. Linares-Barranco, T. Serrano-Gotarredona, L. A. Camuñas-Mesa, J. A. Perez-Carrasco,
C. Zamarreño-Ramos, and T. Masquelier, “On spike-timing-dependent-plasticity, memristive
devices, and building a self-learning visual cortex,” Frontiers in neuroscience, vol. 5, p. 26,
2011.

[193] J. A. Pérez-Carrasco, C. Zamarreño-Ramos, T. Serrano-Gotarredona, and B. Linares-
Barranco, “On neuromorphic spiking architectures for asynchronous stdp memristive sys-
tems,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
IEEE, 2010, pp. 1659–1662.

www.manaraa.com

90

[194] D. Querlioz, O. Bichler, and C. Gamrat, “Simulation of a memristor-based spiking neural
network immune to device variations,” in The 2011 International Joint Conference on Neural
Networks. IEEE, 2011, pp. 1775–1781.

[195] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and C. Gamrat, “Visual pattern
extraction using energy-efficient “2-pcm synapse” neuromorphic architecture,” IEEE Trans-
actions on Electron Devices, vol. 59, no. 8, pp. 2206–2214, 2012.

[196] G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat, R. S. Shenoy,
P. Narayanan, K. Virwani, E. U. Giacometti et al., “Experimental demonstration and tol-
erancing of a large-scale neural network (165 000 synapses) using phase-change memory as
the synaptic weight element,” IEEE Transactions on Electron Devices, vol. 62, no. 11, pp.
3498–3507, 2015.

[197] A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler, C. Gamrat, W. S.
Zhao, J.-O. Klein, S. Galdin-Retailleau, and D. Querlioz, “Spin-transfer torque magnetic
memory as a stochastic memristive synapse for neuromorphic systems,” IEEE transactions
on biomedical circuits and systems, vol. 9, no. 2, pp. 166–174, 2015.

[198] Y. Pan, P. Ouyang, Y. Zhao, W. Kang, S. Yin, Y. Zhang, W. Zhao, and S. Wei, “A multi-
level cell stt-mram-based computing in-memory accelerator for binary convolutional neural
network,” IEEE Transactions on Magnetics, no. 99, pp. 1–5, 2018.

[199] H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick,
and S. Slesazeck, “Novel ferroelectric fet based synapse for neuromorphic systems,” in 2017
Symposium on VLSI Technology. IEEE, 2017, pp. T176–T177.

[200] M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric fet
analog synapse for acceleration of deep neural network training,” in 2017 IEEE International
Electron Devices Meeting (IEDM). IEEE, 2017, pp. 6–2.

	Towards energy-efficient hardware acceleration of memory-intensive event-driven kernels on a synchronous neuromorphic substrate
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Artificial Neural Networks
	1.2 Hardware Acceleration
	1.3 Spiking Neural Networks
	1.4 Neuromorphic Computing
	1.5 Contributions

	2. BACKGROUND
	2.1 Biophysical background
	2.1.1 Membrane capacitance
	2.1.2 Action potential
	2.1.3 Ion channels
	2.1.4 Synapses

	2.2 Mathematical models
	2.2.1 The Hodgkin-Huxley model
	2.2.2 Phenomenological models

	2.3 Silicon neurons and synapses
	2.3.1 Neurons
	2.3.2 Synapses

	3. BENCHMARKS
	3.1 Spiking Neural Networks
	3.1.1 Spike Inputs
	3.1.2 Inference
	3.1.3 Output handling

	3.2 Benchmark I
	3.2.1 Architecture
	3.2.2 Simulation

	3.3 Benchmark II
	3.3.1 Architecture
	3.3.2 Simulation

	3.4 Benchmark III
	3.4.1 Architecture
	3.4.2 Simulation

	3.5 Summary

	4. THE CyNAPSE ARCHITECTURE
	4.1 System Overview
	4.1.1 Overall hardware architecture
	4.1.2 Neuron design

	4.2 Scheduling and control flow
	4.2.1 Core control
	4.2.2 Memory control

	4.3 Programming and Reconfigurability
	4.4 Implementation details

	5. ADAPTIVE MEMORY MANAGEMENT
	5.1 Power consumption profile
	5.2 Energy-efficient memory management techniques
	5.2.1 Cache management policies
	5.2.2 Proposed management strategy
	5.2.3 Network-adaptive enhancements

	5.3 Experimental Infrastructure
	5.4 Results
	5.4.1 Read-time replacement
	5.4.2 LRU vs Random vs Proposed policy

	5.5 Summary

	6. FUTURE-WORK AND CONCLUSIONS
	6.1 Extensions
	6.2 Architectural enhancements
	6.3 Learning
	6.3.1 Evolving neural networks
	6.3.2 Emerging Devices

	6.4 Conclusion

	BIBLIOGRAPHY

